关于非局部介质中的临界时谐麦克斯韦方程

IF 1.3 3区 数学 Q1 MATHEMATICS
Minbo Yang, Weiwei Ye, Shuijin Zhang
{"title":"关于非局部介质中的临界时谐麦克斯韦方程","authors":"Minbo Yang, Weiwei Ye, Shuijin Zhang","doi":"10.1017/prm.2024.11","DOIUrl":null,"url":null,"abstract":"In this paper, we study the existence of solutions for a critical time–harmonic Maxwell equation in nonlocal media <jats:disp-formula> <jats:alternatives> <jats:tex-math>\\[ \\begin{cases} \\nabla\\times(\\nabla\\times u)+\\lambda u=\\left(I_{\\alpha}\\ast|u|^{2^{{\\ast}}_{\\alpha}}\\right)|u|^{2^{{\\ast}}_{\\alpha}-2}u &amp; \\mathrm{in}\\ \\Omega,\\\\ \\nu\\times u=0 &amp; \\mathrm{on}\\ \\partial\\Omega, \\end{cases} \\]</jats:tex-math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" position=\"float\" xlink:href=\"S0308210524000118_eqnU1.png\" /> </jats:alternatives> </jats:disp-formula>where <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\Omega \\subset \\mathbb {R}^{3}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000118_inline1.png\" /> </jats:alternatives> </jats:inline-formula> is a bounded domain, either convex or with <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\mathcal {C}^{1,1}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000118_inline2.png\" /> </jats:alternatives> </jats:inline-formula> boundary, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\nu$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000118_inline3.png\" /> </jats:alternatives> </jats:inline-formula> is the exterior normal, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\lambda &lt;0$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000118_inline4.png\" /> </jats:alternatives> </jats:inline-formula> is a real parameter, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$2^{\\ast }_{\\alpha }=3+\\alpha$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000118_inline5.png\" /> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:tex-math>$0&lt;\\alpha &lt;3$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000118_inline6.png\" /> </jats:alternatives> </jats:inline-formula> is the upper critical exponent due to the Hardy–Littlewood–Sobolev inequality. By introducing some suitable Coulomb spaces involving curl operator <jats:inline-formula> <jats:alternatives> <jats:tex-math>$W^{\\alpha,2^{\\ast }_{\\alpha }}_{0}(\\mathrm {curl};\\Omega )$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000118_inline7.png\" /> </jats:alternatives> </jats:inline-formula>, we are able to obtain the ground state solutions of the curl–curl equation via the method of constraining Nehari–Pankov manifold. Correspondingly, some sharp constants of the Sobolev-like inequalities with curl operator are obtained by a nonlocal version of the concentration–compactness principle.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"6 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a critical time-harmonic Maxwell equation in nonlocal media\",\"authors\":\"Minbo Yang, Weiwei Ye, Shuijin Zhang\",\"doi\":\"10.1017/prm.2024.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the existence of solutions for a critical time–harmonic Maxwell equation in nonlocal media <jats:disp-formula> <jats:alternatives> <jats:tex-math>\\\\[ \\\\begin{cases} \\\\nabla\\\\times(\\\\nabla\\\\times u)+\\\\lambda u=\\\\left(I_{\\\\alpha}\\\\ast|u|^{2^{{\\\\ast}}_{\\\\alpha}}\\\\right)|u|^{2^{{\\\\ast}}_{\\\\alpha}-2}u &amp; \\\\mathrm{in}\\\\ \\\\Omega,\\\\\\\\ \\\\nu\\\\times u=0 &amp; \\\\mathrm{on}\\\\ \\\\partial\\\\Omega, \\\\end{cases} \\\\]</jats:tex-math> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" position=\\\"float\\\" xlink:href=\\\"S0308210524000118_eqnU1.png\\\" /> </jats:alternatives> </jats:disp-formula>where <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\Omega \\\\subset \\\\mathbb {R}^{3}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000118_inline1.png\\\" /> </jats:alternatives> </jats:inline-formula> is a bounded domain, either convex or with <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\mathcal {C}^{1,1}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000118_inline2.png\\\" /> </jats:alternatives> </jats:inline-formula> boundary, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\nu$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000118_inline3.png\\\" /> </jats:alternatives> </jats:inline-formula> is the exterior normal, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\lambda &lt;0$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000118_inline4.png\\\" /> </jats:alternatives> </jats:inline-formula> is a real parameter, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$2^{\\\\ast }_{\\\\alpha }=3+\\\\alpha$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000118_inline5.png\\\" /> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:tex-math>$0&lt;\\\\alpha &lt;3$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000118_inline6.png\\\" /> </jats:alternatives> </jats:inline-formula> is the upper critical exponent due to the Hardy–Littlewood–Sobolev inequality. By introducing some suitable Coulomb spaces involving curl operator <jats:inline-formula> <jats:alternatives> <jats:tex-math>$W^{\\\\alpha,2^{\\\\ast }_{\\\\alpha }}_{0}(\\\\mathrm {curl};\\\\Omega )$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000118_inline7.png\\\" /> </jats:alternatives> </jats:inline-formula>, we are able to obtain the ground state solutions of the curl–curl equation via the method of constraining Nehari–Pankov manifold. Correspondingly, some sharp constants of the Sobolev-like inequalities with curl operator are obtained by a nonlocal version of the concentration–compactness principle.\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2024.11\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.11","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了非局部介质中临界时谐麦克斯韦方程的解的存在性。\nabla\times(\nabla\times u)+\lambda u=\left(I_{\alpha}\ast|u|^{2^{{\ast}}_{\alpha}}\right)|u|^{2^{{\ast}}_{\alpha}-2}u &\mathrm{in}\Omega,\nu\times u=0 & \mathrm{on}\partial\Omega, \end{cases}.\其中 $\Omega \subset \mathbb {R}^{3}$ 是一个有界域,要么是凸域,要么是有 $\mathcal {C}^{1,1}$ 边界的域,$\nu$ 是外部法线,$\lambda <;0$ 是一个实数参数,$2^{\ast }_{\alpha }=3+\alpha$ 中的 $0<\alpha <3$ 是由于哈代-利特尔伍德-索博列夫不等式产生的上临界指数。通过引入涉及卷曲算子 $W^{\alpha,2^{\ast }_{\alpha }}_{0}(\mathrm {curl};\Omega )$ 的一些合适的库仑空间,我们能够通过约束奈哈里-潘科夫流形的方法得到卷曲-卷曲方程的基态解。相应地,通过非局部版的集中-紧凑性原理,我们得到了带卷曲算子的索波列夫不等式的一些尖锐常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a critical time-harmonic Maxwell equation in nonlocal media
In this paper, we study the existence of solutions for a critical time–harmonic Maxwell equation in nonlocal media \[ \begin{cases} \nabla\times(\nabla\times u)+\lambda u=\left(I_{\alpha}\ast|u|^{2^{{\ast}}_{\alpha}}\right)|u|^{2^{{\ast}}_{\alpha}-2}u & \mathrm{in}\ \Omega,\\ \nu\times u=0 & \mathrm{on}\ \partial\Omega, \end{cases} \] where $\Omega \subset \mathbb {R}^{3}$ is a bounded domain, either convex or with $\mathcal {C}^{1,1}$ boundary, $\nu$ is the exterior normal, $\lambda <0$ is a real parameter, $2^{\ast }_{\alpha }=3+\alpha$ with $0<\alpha <3$ is the upper critical exponent due to the Hardy–Littlewood–Sobolev inequality. By introducing some suitable Coulomb spaces involving curl operator $W^{\alpha,2^{\ast }_{\alpha }}_{0}(\mathrm {curl};\Omega )$ , we are able to obtain the ground state solutions of the curl–curl equation via the method of constraining Nehari–Pankov manifold. Correspondingly, some sharp constants of the Sobolev-like inequalities with curl operator are obtained by a nonlocal version of the concentration–compactness principle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信