{"title":"关于非局部介质中的临界时谐麦克斯韦方程","authors":"Minbo Yang, Weiwei Ye, Shuijin Zhang","doi":"10.1017/prm.2024.11","DOIUrl":null,"url":null,"abstract":"In this paper, we study the existence of solutions for a critical time–harmonic Maxwell equation in nonlocal media <jats:disp-formula> <jats:alternatives> <jats:tex-math>\\[ \\begin{cases} \\nabla\\times(\\nabla\\times u)+\\lambda u=\\left(I_{\\alpha}\\ast|u|^{2^{{\\ast}}_{\\alpha}}\\right)|u|^{2^{{\\ast}}_{\\alpha}-2}u & \\mathrm{in}\\ \\Omega,\\\\ \\nu\\times u=0 & \\mathrm{on}\\ \\partial\\Omega, \\end{cases} \\]</jats:tex-math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" position=\"float\" xlink:href=\"S0308210524000118_eqnU1.png\" /> </jats:alternatives> </jats:disp-formula>where <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\Omega \\subset \\mathbb {R}^{3}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000118_inline1.png\" /> </jats:alternatives> </jats:inline-formula> is a bounded domain, either convex or with <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\mathcal {C}^{1,1}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000118_inline2.png\" /> </jats:alternatives> </jats:inline-formula> boundary, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\nu$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000118_inline3.png\" /> </jats:alternatives> </jats:inline-formula> is the exterior normal, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\lambda <0$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000118_inline4.png\" /> </jats:alternatives> </jats:inline-formula> is a real parameter, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$2^{\\ast }_{\\alpha }=3+\\alpha$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000118_inline5.png\" /> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:tex-math>$0<\\alpha <3$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000118_inline6.png\" /> </jats:alternatives> </jats:inline-formula> is the upper critical exponent due to the Hardy–Littlewood–Sobolev inequality. By introducing some suitable Coulomb spaces involving curl operator <jats:inline-formula> <jats:alternatives> <jats:tex-math>$W^{\\alpha,2^{\\ast }_{\\alpha }}_{0}(\\mathrm {curl};\\Omega )$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000118_inline7.png\" /> </jats:alternatives> </jats:inline-formula>, we are able to obtain the ground state solutions of the curl–curl equation via the method of constraining Nehari–Pankov manifold. Correspondingly, some sharp constants of the Sobolev-like inequalities with curl operator are obtained by a nonlocal version of the concentration–compactness principle.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"6 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a critical time-harmonic Maxwell equation in nonlocal media\",\"authors\":\"Minbo Yang, Weiwei Ye, Shuijin Zhang\",\"doi\":\"10.1017/prm.2024.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the existence of solutions for a critical time–harmonic Maxwell equation in nonlocal media <jats:disp-formula> <jats:alternatives> <jats:tex-math>\\\\[ \\\\begin{cases} \\\\nabla\\\\times(\\\\nabla\\\\times u)+\\\\lambda u=\\\\left(I_{\\\\alpha}\\\\ast|u|^{2^{{\\\\ast}}_{\\\\alpha}}\\\\right)|u|^{2^{{\\\\ast}}_{\\\\alpha}-2}u & \\\\mathrm{in}\\\\ \\\\Omega,\\\\\\\\ \\\\nu\\\\times u=0 & \\\\mathrm{on}\\\\ \\\\partial\\\\Omega, \\\\end{cases} \\\\]</jats:tex-math> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" position=\\\"float\\\" xlink:href=\\\"S0308210524000118_eqnU1.png\\\" /> </jats:alternatives> </jats:disp-formula>where <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\Omega \\\\subset \\\\mathbb {R}^{3}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000118_inline1.png\\\" /> </jats:alternatives> </jats:inline-formula> is a bounded domain, either convex or with <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\mathcal {C}^{1,1}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000118_inline2.png\\\" /> </jats:alternatives> </jats:inline-formula> boundary, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\nu$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000118_inline3.png\\\" /> </jats:alternatives> </jats:inline-formula> is the exterior normal, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\lambda <0$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000118_inline4.png\\\" /> </jats:alternatives> </jats:inline-formula> is a real parameter, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$2^{\\\\ast }_{\\\\alpha }=3+\\\\alpha$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000118_inline5.png\\\" /> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:tex-math>$0<\\\\alpha <3$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000118_inline6.png\\\" /> </jats:alternatives> </jats:inline-formula> is the upper critical exponent due to the Hardy–Littlewood–Sobolev inequality. By introducing some suitable Coulomb spaces involving curl operator <jats:inline-formula> <jats:alternatives> <jats:tex-math>$W^{\\\\alpha,2^{\\\\ast }_{\\\\alpha }}_{0}(\\\\mathrm {curl};\\\\Omega )$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000118_inline7.png\\\" /> </jats:alternatives> </jats:inline-formula>, we are able to obtain the ground state solutions of the curl–curl equation via the method of constraining Nehari–Pankov manifold. Correspondingly, some sharp constants of the Sobolev-like inequalities with curl operator are obtained by a nonlocal version of the concentration–compactness principle.\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2024.11\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.11","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On a critical time-harmonic Maxwell equation in nonlocal media
In this paper, we study the existence of solutions for a critical time–harmonic Maxwell equation in nonlocal media \[ \begin{cases} \nabla\times(\nabla\times u)+\lambda u=\left(I_{\alpha}\ast|u|^{2^{{\ast}}_{\alpha}}\right)|u|^{2^{{\ast}}_{\alpha}-2}u & \mathrm{in}\ \Omega,\\ \nu\times u=0 & \mathrm{on}\ \partial\Omega, \end{cases} \]where $\Omega \subset \mathbb {R}^{3}$ is a bounded domain, either convex or with $\mathcal {C}^{1,1}$ boundary, $\nu$ is the exterior normal, $\lambda <0$ is a real parameter, $2^{\ast }_{\alpha }=3+\alpha$ with $0<\alpha <3$ is the upper critical exponent due to the Hardy–Littlewood–Sobolev inequality. By introducing some suitable Coulomb spaces involving curl operator $W^{\alpha,2^{\ast }_{\alpha }}_{0}(\mathrm {curl};\Omega )$, we are able to obtain the ground state solutions of the curl–curl equation via the method of constraining Nehari–Pankov manifold. Correspondingly, some sharp constants of the Sobolev-like inequalities with curl operator are obtained by a nonlocal version of the concentration–compactness principle.
期刊介绍:
A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations.
An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.