A mathematical analysis of the Kakinuma model for interfacial gravity waves. Part II: justification as a shallow water approximation

IF 1.3 3区 数学 Q1 MATHEMATICS
Vincent Duchêne, Tatsuo Iguchi
{"title":"A mathematical analysis of the Kakinuma model for interfacial gravity waves. Part II: justification as a shallow water approximation","authors":"Vincent Duchêne, Tatsuo Iguchi","doi":"10.1017/prm.2024.30","DOIUrl":null,"url":null,"abstract":"<p>We consider the Kakinuma model for the motion of interfacial gravity waves. The Kakinuma model is a system of Euler–Lagrange equations for an approximate Lagrangian, which is obtained by approximating the velocity potentials in the Lagrangian of the full model. Structures of the Kakinuma model and the well-posedness of its initial value problem were analysed in the companion paper [14]. In this present paper, we show that the Kakinuma model is a higher order shallow water approximation to the full model for interfacial gravity waves with an error of order <span><span><span data-mathjax-type=\"texmath\"><span>$O(\\delta _1^{4N+2}+\\delta _2^{4N+2})$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240316153711817-0521:S0308210524000301:S0308210524000301_inline1.png\"/></span></span> in the sense of consistency, where <span><span><span data-mathjax-type=\"texmath\"><span>$\\delta _1$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240316153711817-0521:S0308210524000301:S0308210524000301_inline2.png\"/></span></span> and <span><span><span data-mathjax-type=\"texmath\"><span>$\\delta _2$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240316153711817-0521:S0308210524000301:S0308210524000301_inline3.png\"/></span></span> are shallowness parameters, which are the ratios of the mean depths of the upper and the lower layers to the typical horizontal wavelength, respectively, and <span><span><span data-mathjax-type=\"texmath\"><span>$N$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240316153711817-0521:S0308210524000301:S0308210524000301_inline4.png\"/></span></span> is, roughly speaking, the size of the Kakinuma model and can be taken an arbitrarily large number. Moreover, under a hypothesis of the existence of the solution to the full model with a uniform bound, a rigorous justification of the Kakinuma model is proved by giving an error estimate between the solution to the Kakinuma model and that of the full model. An error estimate between the Hamiltonian of the Kakinuma model and that of the full model is also provided.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"16 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.30","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the Kakinuma model for the motion of interfacial gravity waves. The Kakinuma model is a system of Euler–Lagrange equations for an approximate Lagrangian, which is obtained by approximating the velocity potentials in the Lagrangian of the full model. Structures of the Kakinuma model and the well-posedness of its initial value problem were analysed in the companion paper [14]. In this present paper, we show that the Kakinuma model is a higher order shallow water approximation to the full model for interfacial gravity waves with an error of order $O(\delta _1^{4N+2}+\delta _2^{4N+2})$Abstract Image in the sense of consistency, where $\delta _1$Abstract Image and $\delta _2$Abstract Image are shallowness parameters, which are the ratios of the mean depths of the upper and the lower layers to the typical horizontal wavelength, respectively, and $N$Abstract Image is, roughly speaking, the size of the Kakinuma model and can be taken an arbitrarily large number. Moreover, under a hypothesis of the existence of the solution to the full model with a uniform bound, a rigorous justification of the Kakinuma model is proved by giving an error estimate between the solution to the Kakinuma model and that of the full model. An error estimate between the Hamiltonian of the Kakinuma model and that of the full model is also provided.

界面重力波 Kakinuma 模型的数学分析。第二部分:浅水近似的合理性
我们考虑了界面重力波运动的 Kakinuma 模型。柿沼模型是一个近似拉格朗日的欧拉-拉格朗日方程组,它是通过近似完整模型拉格朗日中的速度势得到的。相关论文[14]分析了 Kakinuma 模型的结构及其初值问题的良好求解。在本文中,我们证明了 Kakinuma 模型是界面重力波完整模型的高阶浅水近似,在一致性意义上误差为 $O(\delta _1^{4N+2}+\delta _2^{4N+2})$、其中,$\delta _1$和$\delta _2$是浅度参数,分别是上层和下层的平均深度与典型水平波长之比;$N$大致是柿沼模型的大小,可以任意取大。此外,在完整模型解存在均匀约束的假设下,通过给出柿沼模型解与完整模型解之间的误差估计,证明了柿沼模型的严格合理性。此外,还给出了柿沼模型的哈密顿和完整模型的哈密顿之间的误差估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信