一些分数抛物方程解的无穷衰减

IF 1.3 3区 数学 Q1 MATHEMATICS
Agnid Banerjee, Abhishek Ghosh
{"title":"一些分数抛物方程解的无穷衰减","authors":"Agnid Banerjee, Abhishek Ghosh","doi":"10.1017/prm.2024.9","DOIUrl":null,"url":null,"abstract":"<p>For <span><span><span data-mathjax-type=\"texmath\"><span>$s\\in [\\tfrac {1}{2},\\, 1)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline1.png\"/></span></span>, let <span><span><span data-mathjax-type=\"texmath\"><span>$u$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline2.png\"/></span></span> solve <span><span><span data-mathjax-type=\"texmath\"><span>$(\\partial _t - \\Delta )^s u = Vu$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline3.png\"/></span></span> in <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathbb {R}^{n} \\times [-T,\\, 0]$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline4.png\"/></span></span> for some <span><span><span data-mathjax-type=\"texmath\"><span>$T&gt;0$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline5.png\"/></span></span> where <span><span><span data-mathjax-type=\"texmath\"><span>$||V||_{ C^2(\\mathbb {R}^n \\times [-T, 0])} &lt; \\infty$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline6.png\"/></span></span>. We show that if for some <span><span><span data-mathjax-type=\"texmath\"><span>$0&lt;\\mathfrak {K} &lt; T$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline7.png\"/></span></span> and <span><span><span data-mathjax-type=\"texmath\"><span>$\\epsilon &gt;0$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline8.png\"/></span></span><span><span data-mathjax-type=\"texmath\"><span>\\[ {\\unicode{x2A0D}}-_{[-\\mathfrak{K},\\, 0]} u^2(x, t) {\\rm d}t \\leq Ce^{-|x|^{2+\\epsilon}}\\ \\forall x \\in \\mathbb{R}^n, \\]</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_eqnU1.png\"/></span>then <span><span><span data-mathjax-type=\"texmath\"><span>$u \\equiv 0$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline9.png\"/></span></span> in <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathbb {R}^{n} \\times [-T,\\, 0]$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline10.png\"/></span></span>.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"18 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decay at infinity for solutions to some fractional parabolic equations\",\"authors\":\"Agnid Banerjee, Abhishek Ghosh\",\"doi\":\"10.1017/prm.2024.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$s\\\\in [\\\\tfrac {1}{2},\\\\, 1)$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline1.png\\\"/></span></span>, let <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$u$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline2.png\\\"/></span></span> solve <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$(\\\\partial _t - \\\\Delta )^s u = Vu$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline3.png\\\"/></span></span> in <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {R}^{n} \\\\times [-T,\\\\, 0]$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline4.png\\\"/></span></span> for some <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$T&gt;0$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline5.png\\\"/></span></span> where <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$||V||_{ C^2(\\\\mathbb {R}^n \\\\times [-T, 0])} &lt; \\\\infty$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline6.png\\\"/></span></span>. We show that if for some <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$0&lt;\\\\mathfrak {K} &lt; T$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline7.png\\\"/></span></span> and <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\epsilon &gt;0$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline8.png\\\"/></span></span><span><span data-mathjax-type=\\\"texmath\\\"><span>\\\\[ {\\\\unicode{x2A0D}}-_{[-\\\\mathfrak{K},\\\\, 0]} u^2(x, t) {\\\\rm d}t \\\\leq Ce^{-|x|^{2+\\\\epsilon}}\\\\ \\\\forall x \\\\in \\\\mathbb{R}^n, \\\\]</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_eqnU1.png\\\"/></span>then <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$u \\\\equiv 0$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline9.png\\\"/></span></span> in <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {R}^{n} \\\\times [-T,\\\\, 0]$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240313135246144-0856:S030821052400009X:S030821052400009X_inline10.png\\\"/></span></span>.</p>\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2024.9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于 $s\in [\tfrac {1}{2},\, 1)$,让 $u$ 在 $\mathbb {R}^{n} 中求解 $(\partial _t -\Delta )^s u = Vu$。\对于某个 $T>0$,$||V||_{ C^2(\mathbb {R}^{n \times [-T, 0])} < \infty$。我们证明,如果对于某个 $0<\mathfrak {K} < T$ 和 $\epsilon >;0$\[ {\unicode{x2A0D}}-_{[-\mathfrak{K},\, 0]} u^2(x, t) {\rm d}t \leq Ce^{-|x|^{2+\epsilon}}\ forall x \in \mathbb{R}^n, \]那么 $u \equiv 0$ in $\mathbb{R}^{n}.\times [-T,\, 0]$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decay at infinity for solutions to some fractional parabolic equations

For $s\in [\tfrac {1}{2},\, 1)$, let $u$ solve $(\partial _t - \Delta )^s u = Vu$ in $\mathbb {R}^{n} \times [-T,\, 0]$ for some $T>0$ where $||V||_{ C^2(\mathbb {R}^n \times [-T, 0])} < \infty$. We show that if for some $0<\mathfrak {K} < T$ and $\epsilon >0$\[ {\unicode{x2A0D}}-_{[-\mathfrak{K},\, 0]} u^2(x, t) {\rm d}t \leq Ce^{-|x|^{2+\epsilon}}\ \forall x \in \mathbb{R}^n, \]then $u \equiv 0$ in $\mathbb {R}^{n} \times [-T,\, 0]$.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信