随机薛定谔延迟晶格系统的不变量和大偏差原理

IF 1.3 3区 数学 Q1 MATHEMATICS
Zhang Chen, Xiaoxiao Sun, Bixiang Wang
{"title":"随机薛定谔延迟晶格系统的不变量和大偏差原理","authors":"Zhang Chen, Xiaoxiao Sun, Bixiang Wang","doi":"10.1017/prm.2024.20","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerned with stochastic Schrödinger delay lattice systems with both locally Lipschitz drift and diffusion terms. Based on the uniform estimates and the equicontinuity of the segment of the solution in probability, we show the tightness of a family of probability distributions of the solution and its segment process, and hence the existence of invariant measures on <span><span><span data-mathjax-type=\"texmath\"><span>$l^2\\times L^2((-\\rho,\\,0);l^2)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240302133705906-0511:S0308210524000209:S0308210524000209_inline1.png\"/></span></span> with <span><span><span data-mathjax-type=\"texmath\"><span>$\\rho &gt;0$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240302133705906-0511:S0308210524000209:S0308210524000209_inline2.png\"/></span></span>. We also establish a large deviation principle for the solutions with small noise by the weak convergence method.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariant measures and large deviation principles for stochastic Schrödinger delay lattice systems\",\"authors\":\"Zhang Chen, Xiaoxiao Sun, Bixiang Wang\",\"doi\":\"10.1017/prm.2024.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is concerned with stochastic Schrödinger delay lattice systems with both locally Lipschitz drift and diffusion terms. Based on the uniform estimates and the equicontinuity of the segment of the solution in probability, we show the tightness of a family of probability distributions of the solution and its segment process, and hence the existence of invariant measures on <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$l^2\\\\times L^2((-\\\\rho,\\\\,0);l^2)$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240302133705906-0511:S0308210524000209:S0308210524000209_inline1.png\\\"/></span></span> with <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\rho &gt;0$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240302133705906-0511:S0308210524000209:S0308210524000209_inline2.png\\\"/></span></span>. We also establish a large deviation principle for the solutions with small noise by the weak convergence method.</p>\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2024.20\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.20","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文关注的是具有局部利普齐兹漂移项和扩散项的随机薛定谔延迟晶格系统。基于均匀估计和解段在概率上的等连续性,我们证明了解及其段过程的概率分布族的严密性,从而证明了$l^2\times L^2((-\rho,\,0);l^2)$上存在$\rho >0$的不变度量。我们还通过弱收敛法建立了小噪声解的大偏差原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invariant measures and large deviation principles for stochastic Schrödinger delay lattice systems

This paper is concerned with stochastic Schrödinger delay lattice systems with both locally Lipschitz drift and diffusion terms. Based on the uniform estimates and the equicontinuity of the segment of the solution in probability, we show the tightness of a family of probability distributions of the solution and its segment process, and hence the existence of invariant measures on $l^2\times L^2((-\rho,\,0);l^2)$ with $\rho >0$. We also establish a large deviation principle for the solutions with small noise by the weak convergence method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信