Invariant set generated by a nonreal number is everywhere dense

IF 1.3 3区 数学 Q1 MATHEMATICS
Artūras Dubickas
{"title":"Invariant set generated by a nonreal number is everywhere dense","authors":"Artūras Dubickas","doi":"10.1017/prm.2024.22","DOIUrl":null,"url":null,"abstract":"A set of complex numbers <jats:inline-formula> <jats:alternatives> <jats:tex-math>$S$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline1.png\" /> </jats:alternatives> </jats:inline-formula> is called invariant if it is closed under addition and multiplication, namely, for any <jats:inline-formula> <jats:alternatives> <jats:tex-math>$x, y \\in S$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline2.png\" /> </jats:alternatives> </jats:inline-formula> we have <jats:inline-formula> <jats:alternatives> <jats:tex-math>$x+y \\in S$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline3.png\" /> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:tex-math>$xy \\in S$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline4.png\" /> </jats:alternatives> </jats:inline-formula>. For each <jats:inline-formula> <jats:alternatives> <jats:tex-math>$s \\in {\\mathbb {C}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline5.png\" /> </jats:alternatives> </jats:inline-formula> the smallest invariant set <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\mathbb {N}}[s]$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline6.png\" /> </jats:alternatives> </jats:inline-formula> containing <jats:inline-formula> <jats:alternatives> <jats:tex-math>$s$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline7.png\" /> </jats:alternatives> </jats:inline-formula> consists of all possible sums <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\sum _{i \\in I} a_i s^i$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline8.png\" /> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:tex-math>$I$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline9.png\" /> </jats:alternatives> </jats:inline-formula> runs over all finite nonempty subsets of the set of positive integers <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\mathbb {N}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline10.png\" /> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:tex-math>$a_i \\in {\\mathbb {N}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline11.png\" /> </jats:alternatives> </jats:inline-formula> for each <jats:inline-formula> <jats:alternatives> <jats:tex-math>$i \\in I$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline12.png\" /> </jats:alternatives> </jats:inline-formula>. In this paper, we prove that for <jats:inline-formula> <jats:alternatives> <jats:tex-math>$s \\in {\\mathbb {C}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline13.png\" /> </jats:alternatives> </jats:inline-formula> the set <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\mathbb {N}}[s]$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline14.png\" /> </jats:alternatives> </jats:inline-formula> is everywhere dense in <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\mathbb {C}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline15.png\" /> </jats:alternatives> </jats:inline-formula> if and only if <jats:inline-formula> <jats:alternatives> <jats:tex-math>$s \\notin {\\mathbb {R}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline16.png\" /> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:tex-math>$s$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline17.png\" /> </jats:alternatives> </jats:inline-formula> is not a quadratic algebraic integer. More precisely, we show that if <jats:inline-formula> <jats:alternatives> <jats:tex-math>$s \\in {\\mathbb {C}} \\setminus {\\mathbb {R}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline18.png\" /> </jats:alternatives> </jats:inline-formula> is a transcendental number, then there is a positive integer <jats:inline-formula> <jats:alternatives> <jats:tex-math>$n$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline19.png\" /> </jats:alternatives> </jats:inline-formula> such that the sumset <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\mathbb {N}} t^n+{\\mathbb {N}} t^{2n} +{\\mathbb {N}} t^{3n}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline20.png\" /> </jats:alternatives> </jats:inline-formula> is everywhere dense in <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\mathbb {C}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline21.png\" /> </jats:alternatives> </jats:inline-formula> for either <jats:inline-formula> <jats:alternatives> <jats:tex-math>$t=s$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline22.png\" /> </jats:alternatives> </jats:inline-formula> or <jats:inline-formula> <jats:alternatives> <jats:tex-math>$t=s+s^2$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline23.png\" /> </jats:alternatives> </jats:inline-formula>. Similarly, if <jats:inline-formula> <jats:alternatives> <jats:tex-math>$s \\in {\\mathbb {C}} \\setminus {\\mathbb {R}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline24.png\" /> </jats:alternatives> </jats:inline-formula> is an algebraic number of degree <jats:inline-formula> <jats:alternatives> <jats:tex-math>$d \\ne 2, 4$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline25.png\" /> </jats:alternatives> </jats:inline-formula>, then there are positive integers <jats:inline-formula> <jats:alternatives> <jats:tex-math>$n, m$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline26.png\" /> </jats:alternatives> </jats:inline-formula> such that the sumset <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\mathbb {N}} t^n+{\\mathbb {N}} t^{2n} +{\\mathbb {N}} t^{3n}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline27.png\" /> </jats:alternatives> </jats:inline-formula> is everywhere dense in <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\mathbb {C}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline28.png\" /> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:tex-math>$t=ms+s^2$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline29.png\" /> </jats:alternatives> </jats:inline-formula>. For quadratic and some special quartic algebraic numbers <jats:inline-formula> <jats:alternatives> <jats:tex-math>$s$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline30.png\" /> </jats:alternatives> </jats:inline-formula> it is shown that a similar sumset of three sets cannot be dense. In each of these two cases the density of <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\mathbb {N}}[s]$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline31.png\" /> </jats:alternatives> </jats:inline-formula> in <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\mathbb {C}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline32.png\" /> </jats:alternatives> </jats:inline-formula> is established by a different method: for those special quartic numbers, it is possible to take a sumset of four sets.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"3 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.22","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A set of complex numbers $S$ is called invariant if it is closed under addition and multiplication, namely, for any $x, y \in S$ we have $x+y \in S$ and $xy \in S$ . For each $s \in {\mathbb {C}}$ the smallest invariant set ${\mathbb {N}}[s]$ containing $s$ consists of all possible sums $\sum _{i \in I} a_i s^i$ , where $I$ runs over all finite nonempty subsets of the set of positive integers ${\mathbb {N}}$ and $a_i \in {\mathbb {N}}$ for each $i \in I$ . In this paper, we prove that for $s \in {\mathbb {C}}$ the set ${\mathbb {N}}[s]$ is everywhere dense in ${\mathbb {C}}$ if and only if $s \notin {\mathbb {R}}$ and $s$ is not a quadratic algebraic integer. More precisely, we show that if $s \in {\mathbb {C}} \setminus {\mathbb {R}}$ is a transcendental number, then there is a positive integer $n$ such that the sumset ${\mathbb {N}} t^n+{\mathbb {N}} t^{2n} +{\mathbb {N}} t^{3n}$ is everywhere dense in ${\mathbb {C}}$ for either $t=s$ or $t=s+s^2$ . Similarly, if $s \in {\mathbb {C}} \setminus {\mathbb {R}}$ is an algebraic number of degree $d \ne 2, 4$ , then there are positive integers $n, m$ such that the sumset ${\mathbb {N}} t^n+{\mathbb {N}} t^{2n} +{\mathbb {N}} t^{3n}$ is everywhere dense in ${\mathbb {C}}$ for $t=ms+s^2$ . For quadratic and some special quartic algebraic numbers $s$ it is shown that a similar sumset of three sets cannot be dense. In each of these two cases the density of ${\mathbb {N}}[s]$ in ${\mathbb {C}}$ is established by a different method: for those special quartic numbers, it is possible to take a sumset of four sets.
非实数生成的不变集处处致密
如果复数集合$S$在加法和乘法下是封闭的,即对于S$中的任意$x, y,我们有$x+y \ in S$和$xy \ in S$,那么这个集合就叫做不变集。对于每个 $s \in {\mathbb {C}}$,包含 $s$ 的最小不变集 ${mathbb {N}}[s]$由所有可能的和 $sum _{i \in I} a_i s^i$ 组成,其中 $I$ 遍及正整数集 ${mathbb {N}}$的所有有限非空子集,并且对于每个 $i \in I$,有 $a_i \in {\mathbb {N}}$。在本文中,我们证明对于 $s 在 {\mathbb {C}}$ 中的集合 ${mathbb {N}}[s]$ 在 ${mathbb {C}}$ 中是无处不密的,当且仅当 $s \notin {\mathbb {R}}$ 并且 $s$ 不是二次代数整数。更准确地说,我们证明如果 $s 在 {\mathbb {C}} 中\setminus {\mathbb {R}}$ 是一个超越数,那么存在一个正整数 $n$,使得和集 ${\mathbb {N}} t^n+\{mathbb {N}} t^{2n}+{mathbb {N}} t^{3n}$ 在 ${mathbb {C}}$ 中对于 $t=s$ 或 $t=s+s^2$ 无处不密集。类似地,如果 $s 在 {\mathbb {C}} 中\setminus {\mathbb {R}}$ 是一个度数为 $d \ne 2, 4$ 的代数数,那么有正整数 $n, m$ 使得和集 ${\mathbb {N}} t^n+{\mathbb {N}} t^{2n}.+{mathbb {N}} t^{3n}$ 在 ${mathbb {C}}$ 中对于 $t=ms+s^2$ 无处不密集。对于二次代数数和一些特殊的四元代数数 $s$,类似的三个集合的和集不可能是致密的。在这两种情况下,${{mathbb {N}}[s]$ 在 ${{mathbb {C}}$ 中的密度都是通过不同的方法确定的:对于那些特殊的四元数,可以取四个集合的和集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信