平面基尔霍夫型方程基态解的必要条件和充分条件

IF 1.3 3区 数学 Q1 MATHEMATICS
Chunyu Lei, Binlin Zhang
{"title":"平面基尔霍夫型方程基态解的必要条件和充分条件","authors":"Chunyu Lei, Binlin Zhang","doi":"10.1017/prm.2024.26","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we are concerned with the ground states of the following planar Kirchhoff-type problem:<span><span data-mathjax-type=\"texmath\"><span>\\[ -\\left(1+b\\displaystyle\\int_{\\mathbb{R}^2}|\\nabla u|^2\\,{\\rm d}x\\right)\\Delta u+\\omega u=|u|^{p-2}u, \\quad x\\in\\mathbb{R}^2. \\]</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240308141104504-0258:S030821052400026X:S030821052400026X_eqnU1.png\"/></span>where <span><span><span data-mathjax-type=\"texmath\"><span>$b,\\, \\omega &gt;0$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240308141104504-0258:S030821052400026X:S030821052400026X_inline1.png\"/></span></span> are constants, <span><span><span data-mathjax-type=\"texmath\"><span>$p&gt;2$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240308141104504-0258:S030821052400026X:S030821052400026X_inline2.png\"/></span></span>. Based on variational methods, regularity theory and Schwarz symmetrization, the equivalence of ground state solutions for the above problem with the minimizers for some minimization problems is obtained. In particular, a new scale technique, together with Lagrange multipliers, is delicately employed to overcome some intrinsic difficulties.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"36 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Necessary and sufficient conditions for ground state solutions to planar Kirchhoff-type equations\",\"authors\":\"Chunyu Lei, Binlin Zhang\",\"doi\":\"10.1017/prm.2024.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we are concerned with the ground states of the following planar Kirchhoff-type problem:<span><span data-mathjax-type=\\\"texmath\\\"><span>\\\\[ -\\\\left(1+b\\\\displaystyle\\\\int_{\\\\mathbb{R}^2}|\\\\nabla u|^2\\\\,{\\\\rm d}x\\\\right)\\\\Delta u+\\\\omega u=|u|^{p-2}u, \\\\quad x\\\\in\\\\mathbb{R}^2. \\\\]</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240308141104504-0258:S030821052400026X:S030821052400026X_eqnU1.png\\\"/></span>where <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$b,\\\\, \\\\omega &gt;0$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240308141104504-0258:S030821052400026X:S030821052400026X_inline1.png\\\"/></span></span> are constants, <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$p&gt;2$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240308141104504-0258:S030821052400026X:S030821052400026X_inline2.png\\\"/></span></span>. Based on variational methods, regularity theory and Schwarz symmetrization, the equivalence of ground state solutions for the above problem with the minimizers for some minimization problems is obtained. In particular, a new scale technique, together with Lagrange multipliers, is delicately employed to overcome some intrinsic difficulties.</p>\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2024.26\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.26","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们关注以下平面基尔霍夫型问题的基态:\[ -\left(1+b\displaystyle\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)\Delta u+\omega u=|u|^{p-2}u, \quad x\in\mathbb{R}^2.\其中$b,\,\omega >0$为常数,$p>2$。基于变分法、正则性理论和施瓦茨对称性,得到了上述问题的基态解与某些最小化问题的最小值的等价性。特别是采用了一种新的尺度技术和拉格朗日乘法器,巧妙地克服了一些内在困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Necessary and sufficient conditions for ground state solutions to planar Kirchhoff-type equations

In this paper, we are concerned with the ground states of the following planar Kirchhoff-type problem:\[ -\left(1+b\displaystyle\int_{\mathbb{R}^2}|\nabla u|^2\,{\rm d}x\right)\Delta u+\omega u=|u|^{p-2}u, \quad x\in\mathbb{R}^2. \]where $b,\, \omega >0$ are constants, $p>2$. Based on variational methods, regularity theory and Schwarz symmetrization, the equivalence of ground state solutions for the above problem with the minimizers for some minimization problems is obtained. In particular, a new scale technique, together with Lagrange multipliers, is delicately employed to overcome some intrinsic difficulties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信