具有非局部效应的寄主-寄生虫模型中的分岔和模式形成

IF 1.3 3区 数学 Q1 MATHEMATICS
Chuang Xiang, Jicai Huang, Min Lu, Shigui Ruan, Hao Wang
{"title":"具有非局部效应的寄主-寄生虫模型中的分岔和模式形成","authors":"Chuang Xiang, Jicai Huang, Min Lu, Shigui Ruan, Hao Wang","doi":"10.1017/prm.2024.24","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we analyse Turing instability and bifurcations in a host–parasitoid model with nonlocal effect. For a ordinary differential equation model, we provide some preliminary analysis on Hopf bifurcation. For a reaction–diffusion model with local intraspecific prey competition, we first explore the Turing instability of spatially homogeneous steady states. Next, we show that the model can undergo Hopf bifurcation and Turing–Hopf bifurcation, and find that a pair of spatially nonhomogeneous periodic solutions is stable for a <span>(8,0)-mode Turing–Hopf bifurcation</span> and unstable for a <span>(3,0)-mode Turing–Hopf bifurcation</span>. For a reaction–diffusion model with nonlocal intraspecific prey competition, we study the existence of the Hopf bifurcation, double-Hopf bifurcation, Turing bifurcation, and Turing–Hopf bifurcation successively, and find that a spatially nonhomogeneous quasi-periodic solution is unstable for a <span>(0,1)-mode double-Hopf bifurcation</span>. Our results indicate that the model exhibits complex pattern formations, including transient states, monostability, bistability, and tristability. Finally, numerical simulations are provided to illustrate complex dynamics and verify our theoretical results.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"55 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifurcations and pattern formation in a host–parasitoid model with nonlocal effect\",\"authors\":\"Chuang Xiang, Jicai Huang, Min Lu, Shigui Ruan, Hao Wang\",\"doi\":\"10.1017/prm.2024.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we analyse Turing instability and bifurcations in a host–parasitoid model with nonlocal effect. For a ordinary differential equation model, we provide some preliminary analysis on Hopf bifurcation. For a reaction–diffusion model with local intraspecific prey competition, we first explore the Turing instability of spatially homogeneous steady states. Next, we show that the model can undergo Hopf bifurcation and Turing–Hopf bifurcation, and find that a pair of spatially nonhomogeneous periodic solutions is stable for a <span>(8,0)-mode Turing–Hopf bifurcation</span> and unstable for a <span>(3,0)-mode Turing–Hopf bifurcation</span>. For a reaction–diffusion model with nonlocal intraspecific prey competition, we study the existence of the Hopf bifurcation, double-Hopf bifurcation, Turing bifurcation, and Turing–Hopf bifurcation successively, and find that a spatially nonhomogeneous quasi-periodic solution is unstable for a <span>(0,1)-mode double-Hopf bifurcation</span>. Our results indicate that the model exhibits complex pattern formations, including transient states, monostability, bistability, and tristability. Finally, numerical simulations are provided to illustrate complex dynamics and verify our theoretical results.</p>\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2024.24\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.24","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了具有非局部效应的宿主-寄生虫模型中的图灵不稳定性和分岔。对于常微分方程模型,我们对霍普夫分岔进行了初步分析。对于具有局部种内猎物竞争的反应扩散模型,我们首先探讨了空间均质稳态的图灵不稳定性。接下来,我们证明了该模型可以发生霍普夫分岔和图灵-霍普夫分岔,并发现一对空间非均质周期解在(8,0)模式图灵-霍普夫分岔时是稳定的,而在(3,0)模式图灵-霍普夫分岔时是不稳定的。对于具有非局部种内猎物竞争的反应扩散模型,我们依次研究了霍普夫分岔、双霍普夫分岔、图灵分岔和图灵-霍普夫分岔的存在性,发现空间非均质准周期解在(0,1)模式双霍普夫分岔时是不稳定的。我们的研究结果表明,该模型表现出复杂的形态,包括瞬态、单稳态、双稳态和三稳态。最后,我们提供了数值模拟来说明复杂的动力学并验证我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifurcations and pattern formation in a host–parasitoid model with nonlocal effect

In this paper, we analyse Turing instability and bifurcations in a host–parasitoid model with nonlocal effect. For a ordinary differential equation model, we provide some preliminary analysis on Hopf bifurcation. For a reaction–diffusion model with local intraspecific prey competition, we first explore the Turing instability of spatially homogeneous steady states. Next, we show that the model can undergo Hopf bifurcation and Turing–Hopf bifurcation, and find that a pair of spatially nonhomogeneous periodic solutions is stable for a (8,0)-mode Turing–Hopf bifurcation and unstable for a (3,0)-mode Turing–Hopf bifurcation. For a reaction–diffusion model with nonlocal intraspecific prey competition, we study the existence of the Hopf bifurcation, double-Hopf bifurcation, Turing bifurcation, and Turing–Hopf bifurcation successively, and find that a spatially nonhomogeneous quasi-periodic solution is unstable for a (0,1)-mode double-Hopf bifurcation. Our results indicate that the model exhibits complex pattern formations, including transient states, monostability, bistability, and tristability. Finally, numerical simulations are provided to illustrate complex dynamics and verify our theoretical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信