Global index of real polynomials

IF 1.3 3区 数学 Q1 MATHEMATICS
Gabriel E. Monsalve, Mihai Tibăr
{"title":"Global index of real polynomials","authors":"Gabriel E. Monsalve, Mihai Tibăr","doi":"10.1017/prm.2024.23","DOIUrl":null,"url":null,"abstract":"<p>We develop two methods for expressing the global index of the gradient of a 2 variable polynomial function <span><span><span data-mathjax-type=\"texmath\"><span>$f$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240316153410714-0444:S0308210524000234:S0308210524000234_inline1.png\"/></span></span>: in terms of the atypical fibres of <span><span><span data-mathjax-type=\"texmath\"><span>$f$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240316153410714-0444:S0308210524000234:S0308210524000234_inline2.png\"/></span></span>, and in terms of the clusters of Milnor arcs at infinity. These allow us to derive upper bounds for the global index, in particular refining the one that was found by Durfee in terms of the degree of <span><span><span data-mathjax-type=\"texmath\"><span>$f$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240316153410714-0444:S0308210524000234:S0308210524000234_inline3.png\"/></span></span>.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"96 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.23","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We develop two methods for expressing the global index of the gradient of a 2 variable polynomial function $f$Abstract Image: in terms of the atypical fibres of $f$Abstract Image, and in terms of the clusters of Milnor arcs at infinity. These allow us to derive upper bounds for the global index, in particular refining the one that was found by Durfee in terms of the degree of $f$Abstract Image.

实多项式的全局指数
我们开发了两种方法来表达二变多项式函数 $f$ 梯度的全局指数:用 $f$ 的非典型纤维表示,以及用无穷远处的米尔诺弧群表示。通过这些方法,我们可以推导出全局指数的上限,特别是完善了杜菲根据 $f$ 的阶数所发现的上限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信