具有强非均质吸收的多孔介质方程的永恒解。第一部分:径向非递增剖面

IF 1.3 3区 数学 Q1 MATHEMATICS
Razvan Gabriel Iagar, Philippe Laurençot
{"title":"具有强非均质吸收的多孔介质方程的永恒解。第一部分:径向非递增剖面","authors":"Razvan Gabriel Iagar, Philippe Laurençot","doi":"10.1017/prm.2024.29","DOIUrl":null,"url":null,"abstract":"<p>Existence of specific <span>eternal solutions</span> in exponential self-similar form to the following quasilinear diffusion equation with strong absorption<span><span data-mathjax-type=\"texmath\"><span>\\[ \\partial_t u=\\Delta u^m-|x|^{\\sigma}u^q, \\]</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240312163119404-0773:S0308210524000295:S0308210524000295_eqnU1.png\"/></span>posed for <span><span><span data-mathjax-type=\"texmath\"><span>$(t,\\,x)\\in (0,\\,\\infty )\\times \\mathbb {R}^N$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240312163119404-0773:S0308210524000295:S0308210524000295_inline1.png\"/></span></span>, with <span><span><span data-mathjax-type=\"texmath\"><span>$m&gt;1$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240312163119404-0773:S0308210524000295:S0308210524000295_inline2.png\"/></span></span>, <span><span><span data-mathjax-type=\"texmath\"><span>$q\\in (0,\\,1)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240312163119404-0773:S0308210524000295:S0308210524000295_inline3.png\"/></span></span> and <span><span><span data-mathjax-type=\"texmath\"><span>$\\sigma =\\sigma _c:=2(1-q)/ (m-1)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240312163119404-0773:S0308210524000295:S0308210524000295_inline4.png\"/></span></span> is proved. Looking for radially symmetric solutions of the form<span><span data-mathjax-type=\"texmath\"><span>\\[ u(t,x)={\\rm e}^{-\\alpha t}f(|x|\\,{\\rm e}^{\\beta t}), \\quad \\alpha=\\frac{2}{m-1}\\beta, \\]</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240312163119404-0773:S0308210524000295:S0308210524000295_eqnU2.png\"/></span>we show that there exists a unique exponent <span><span><span data-mathjax-type=\"texmath\"><span>$\\beta ^*\\in (0,\\,\\infty )$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240312163119404-0773:S0308210524000295:S0308210524000295_inline5.png\"/></span></span> for which there exists a one-parameter family <span><span><span data-mathjax-type=\"texmath\"><span>$(u_A)_{A&gt;0}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240312163119404-0773:S0308210524000295:S0308210524000295_inline6.png\"/></span></span> of solutions with compactly supported and non-increasing profiles <span><span><span data-mathjax-type=\"texmath\"><span>$(f_A)_{A&gt;0}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240312163119404-0773:S0308210524000295:S0308210524000295_inline7.png\"/></span></span> satisfying <span><span><span data-mathjax-type=\"texmath\"><span>$f_A(0)=A$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240312163119404-0773:S0308210524000295:S0308210524000295_inline8.png\"/></span></span> and <span><span><span data-mathjax-type=\"texmath\"><span>$f_A'(0)=0$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240312163119404-0773:S0308210524000295:S0308210524000295_inline9.png\"/></span></span>. An important feature of these solutions is that they are bounded and do not vanish in finite time, a phenomenon which is known to take place for all non-negative bounded solutions when <span><span><span data-mathjax-type=\"texmath\"><span>$\\sigma \\in (0,\\,\\sigma _c)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240312163119404-0773:S0308210524000295:S0308210524000295_inline10.png\"/></span></span>.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"24 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eternal solutions to a porous medium equation with strong non-homogeneous absorption. Part I: radially non-increasing profiles\",\"authors\":\"Razvan Gabriel Iagar, Philippe Laurençot\",\"doi\":\"10.1017/prm.2024.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Existence of specific <span>eternal solutions</span> in exponential self-similar form to the following quasilinear diffusion equation with strong absorption<span><span data-mathjax-type=\\\"texmath\\\"><span>\\\\[ \\\\partial_t u=\\\\Delta u^m-|x|^{\\\\sigma}u^q, \\\\]</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240312163119404-0773:S0308210524000295:S0308210524000295_eqnU1.png\\\"/></span>posed for <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$(t,\\\\,x)\\\\in (0,\\\\,\\\\infty )\\\\times \\\\mathbb {R}^N$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240312163119404-0773:S0308210524000295:S0308210524000295_inline1.png\\\"/></span></span>, with <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$m&gt;1$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240312163119404-0773:S0308210524000295:S0308210524000295_inline2.png\\\"/></span></span>, <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$q\\\\in (0,\\\\,1)$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240312163119404-0773:S0308210524000295:S0308210524000295_inline3.png\\\"/></span></span> and <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\sigma =\\\\sigma _c:=2(1-q)/ (m-1)$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240312163119404-0773:S0308210524000295:S0308210524000295_inline4.png\\\"/></span></span> is proved. Looking for radially symmetric solutions of the form<span><span data-mathjax-type=\\\"texmath\\\"><span>\\\\[ u(t,x)={\\\\rm e}^{-\\\\alpha t}f(|x|\\\\,{\\\\rm e}^{\\\\beta t}), \\\\quad \\\\alpha=\\\\frac{2}{m-1}\\\\beta, \\\\]</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240312163119404-0773:S0308210524000295:S0308210524000295_eqnU2.png\\\"/></span>we show that there exists a unique exponent <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\beta ^*\\\\in (0,\\\\,\\\\infty )$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240312163119404-0773:S0308210524000295:S0308210524000295_inline5.png\\\"/></span></span> for which there exists a one-parameter family <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$(u_A)_{A&gt;0}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240312163119404-0773:S0308210524000295:S0308210524000295_inline6.png\\\"/></span></span> of solutions with compactly supported and non-increasing profiles <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$(f_A)_{A&gt;0}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240312163119404-0773:S0308210524000295:S0308210524000295_inline7.png\\\"/></span></span> satisfying <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$f_A(0)=A$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240312163119404-0773:S0308210524000295:S0308210524000295_inline8.png\\\"/></span></span> and <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$f_A'(0)=0$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240312163119404-0773:S0308210524000295:S0308210524000295_inline9.png\\\"/></span></span>. An important feature of these solutions is that they are bounded and do not vanish in finite time, a phenomenon which is known to take place for all non-negative bounded solutions when <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\sigma \\\\in (0,\\\\,\\\\sigma _c)$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240312163119404-0773:S0308210524000295:S0308210524000295_inline10.png\\\"/></span></span>.</p>\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2024.29\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.29","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Existence of specific eternal solutions in exponential self-similar form to the following quasilinear diffusion equation with strong absorption\[ \partial_t u=\Delta u^m-|x|^\{sigma}u^q, \]posed for $(t,\,x)\in (0,\,\infty )\times \mathbb {R}^N$, with $m>;1$, $q\in (0,\,1)$ and $\sigma =\sigma _c:=2(1-q)/ (m-1)$ 得到证明。寻找形式\[ u(t,x)={\rm e}^{-\alpha t}f(|x|\,{\rm e}^{beta t}), \quad \alpha=\frac{2}{m-1}\beta 的径向对称解、\]我们证明在(0,\,\infty)$中存在一个唯一的指数$\beta ^*\,对于这个指数,存在一个单参数族$(u_A)_{A>;0}$ 的解的单参数族,该解具有紧凑支撑且非递增的剖面 $(f_A)_{A>0}$ ,满足 $f_A(0)=A$ 和 $f_A'(0)=0$。这些解的一个重要特征是它们是有界的,并且不会在有限时间内消失,众所周知,当 $\sigma \in (0,\,\sigma _c)$ 时,所有非负有界解都会出现这种现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eternal solutions to a porous medium equation with strong non-homogeneous absorption. Part I: radially non-increasing profiles

Existence of specific eternal solutions in exponential self-similar form to the following quasilinear diffusion equation with strong absorption\[ \partial_t u=\Delta u^m-|x|^{\sigma}u^q, \]posed for $(t,\,x)\in (0,\,\infty )\times \mathbb {R}^N$, with $m>1$, $q\in (0,\,1)$ and $\sigma =\sigma _c:=2(1-q)/ (m-1)$ is proved. Looking for radially symmetric solutions of the form\[ u(t,x)={\rm e}^{-\alpha t}f(|x|\,{\rm e}^{\beta t}), \quad \alpha=\frac{2}{m-1}\beta, \]we show that there exists a unique exponent $\beta ^*\in (0,\,\infty )$ for which there exists a one-parameter family $(u_A)_{A>0}$ of solutions with compactly supported and non-increasing profiles $(f_A)_{A>0}$ satisfying $f_A(0)=A$ and $f_A'(0)=0$. An important feature of these solutions is that they are bounded and do not vanish in finite time, a phenomenon which is known to take place for all non-negative bounded solutions when $\sigma \in (0,\,\sigma _c)$.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信