Electronic Materials Letters最新文献

筛选
英文 中文
High-speed and Sub-ppm Detectable Tellurene NO2 Chemiresistive Room-Temperature Sensor under Humidity Environments 湿度环境下的高速、亚ppm 检测碲烯二氧化氮化学电阻室温传感器
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2024-09-11 DOI: 10.1007/s13391-024-00520-0
Yeonjin Je, Sang-Soo Chee
{"title":"High-speed and Sub-ppm Detectable Tellurene NO2 Chemiresistive Room-Temperature Sensor under Humidity Environments","authors":"Yeonjin Je,&nbsp;Sang-Soo Chee","doi":"10.1007/s13391-024-00520-0","DOIUrl":"10.1007/s13391-024-00520-0","url":null,"abstract":"<div><p>Two-dimensional material, tellurium, composed of tellurium, has emerged as a promising material for NO<sub>2</sub> gas sensing due to its superior intrinsic electrical conductivity and strong affinity to NO<sub>2</sub>. However, the majority of literature on tellurene-based gas sensors has primarily focused on NO<sub>2</sub> detection performances under dry condition, despite the importance of considering humidity-dependent detection properties for practical gas sensing applications. Here, we explore NO<sub>2</sub> detection properties of tellurene-based chemiresistive gas sensor devices under humidity environments at room temperature. The resultant tellurene synthesized via a hydrothermal route presents 2D flake-like morphologies with highly crystalline hexagonal structures. The obtained tellurene chemiresistive sensor devices exhibit a good NO<sub>2</sub> gas response of 35% with a fast response time of 14 s, under dry conditions. Interestingly, our tellurene-based sensor devices also present the humidity-independent NO<sub>2</sub> gas detection performances while achieving a fast response time. These outstanding detection performances are likely due to intrinsically superior electrical conductivity and structural stability of tellurene in air.</p><h3>Graphic Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"21 1","pages":"94 - 101"},"PeriodicalIF":2.1,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Neural Network Approach for Health State Estimation of Lithium-Ion Batteries Incorporating Physics Knowledge 结合物理知识的锂离子电池健康状态估计神经网络方法
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2024-08-31 DOI: 10.1007/s13391-024-00518-8
Guoqing Sun, Yafei Liu, Xuewen Liu
{"title":"A Neural Network Approach for Health State Estimation of Lithium-Ion Batteries Incorporating Physics Knowledge","authors":"Guoqing Sun,&nbsp;Yafei Liu,&nbsp;Xuewen Liu","doi":"10.1007/s13391-024-00518-8","DOIUrl":"10.1007/s13391-024-00518-8","url":null,"abstract":"<div><p>The assessment of the State of Health (SOH) of lithium-ion batteries is paramount to ensuring the safety and reliability of battery management systems. Numerous researchers have employed Equivalent Circuit Models (ECM) and data-driven methodologies to estimate SOH. Each methodology has its merits and drawbacks, yet their integration poses substantial challenges. This paper proposes a novel approach for SOH estimation that synthesizes ECM with data-driven techniques. Initially, parameters for a second-order ECM are identified utilizing the voltage rebound characteristics of lithium-ion batteries. Subsequently, a predictive model is established employing a Long Short-Term Memory (LSTM) neural network. Finally, features extracted from the ECM and the dataset are utilized as inputs for the LSTM neural network to predict SOH. The efficacy of the proposed technique is corroborated by datasets from NASA and CALCE. Results indicate that the novel method’s maximum Root Mean Square Error (RMSE) is confined to 0.79%, and the Mean Absolute Error (MAE) is limited to 0.47%. Compared to other methods, this approach exhibits faster convergence, higher precision, and enhanced generalizability.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"21 1","pages":"119 - 133"},"PeriodicalIF":2.1,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Magnetic Permeability Through Improved Packing Density for Thin-Film Type Power Inductors for High-Frequency Applications 通过提高高频应用薄膜型功率电感器的填料密度来增强磁导率
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2024-08-20 DOI: 10.1007/s13391-024-00517-9
Sung Yong An, Boum Seock Kim
{"title":"Enhanced Magnetic Permeability Through Improved Packing Density for Thin-Film Type Power Inductors for High-Frequency Applications","authors":"Sung Yong An,&nbsp;Boum Seock Kim","doi":"10.1007/s13391-024-00517-9","DOIUrl":"10.1007/s13391-024-00517-9","url":null,"abstract":"<div><p>This study investigates methods to enhance the permeability of metal magnetic composites, crucial for the performance of thin film power inductors in high-frequency applications, such as those in contemporary smartphones operating in the MHz range. Traditional reliance on ferrite magnetic materials is eschewed in favor of metal magnetic materials combined with epoxy to create novel composites aimed at optimizing packing density and significantly increasing magnetic permeability. The impact on permeability is explored using four different metal powders: pure iron (FE), Fe-Si (FS), Fe-Si-B-C-Cr (AM), and Fe-Si-B-Nb-Cu (NC). The FE sample is produced using carbonyl iron powder, resulting in a particle size (D50) of 2.1 μm. The FS sample, produced through gas atomization, has a particle size of 17.5 μm, while the AM and NC samples, produced via water atomization, yield particle sizes (D50) of 19.4 μm and 23 μm, respectively. Analyses using X-ray diffraction (XRD) and Mösbauer spectroscopy reveal that FE and FS samples have crystalline structures, whereas AM and NC are amorphous. Scanning electron microscopy confirms the spherical shape of particles in all samples. Theoretical calculations, based on Ollendorff’s theory of permeability and Suzuki and Oshima’s models on packing fraction, suggest that a composite with a ratio of 8:1.2:0.8 and particle sizes of approximately 25 μm, 1.5 μm, and 0.1 μm, respectively, could achieve a permeability value of up to 138.1. This demonstrates the potential for achieving high permeability at MHz frequencies through strategic packing of voids with submicron and nanopowders, marking a significant advancement in the field of thin film power inductors.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 6","pages":"733 - 744"},"PeriodicalIF":2.1,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible Strain Sensor Based on AgNWs/MXene/SEBS with High Sensitivity and Wide Strain Range 基于 AgNWs/MXene/SEBS 的柔性应变传感器具有高灵敏度和宽应变范围
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2024-08-10 DOI: 10.1007/s13391-024-00514-y
Yubo Yao, Hongfei Dai, Mengnan Ji, Ying Han, Bo Jiang, Chi Cheng, Xiaolei Song, Ying Song, Guangfeng Wu
{"title":"Flexible Strain Sensor Based on AgNWs/MXene/SEBS with High Sensitivity and Wide Strain Range","authors":"Yubo Yao,&nbsp;Hongfei Dai,&nbsp;Mengnan Ji,&nbsp;Ying Han,&nbsp;Bo Jiang,&nbsp;Chi Cheng,&nbsp;Xiaolei Song,&nbsp;Ying Song,&nbsp;Guangfeng Wu","doi":"10.1007/s13391-024-00514-y","DOIUrl":"10.1007/s13391-024-00514-y","url":null,"abstract":"<div><p>Flexible strain sensors that combine high sensitivity and wide range are important for developing wearable electronics. In this paper, AgNWs/MXene/SEBS flexible strain sensor with high sensitivity and wide strain range was prepared using a thermoplastic elastomer (styrene-ethylene-butene-styrene) SEBS as the polymer matrix and AgNWs and MXene as the composite conductive fillers. The sensitivity of the AgNWs/MXene/SEBS sensor is significantly higher than that of the AgNWs/SEBS and MXene/SEBS sensors based on a single conductive filler. At 100% strain, the AgNWs/MXene/SEBS sensor has a sensitivity of 176.25. The sensor detects small strains of 0.5-5% as well as large strains of 5–50% with high linearity. The sensors remained stable after 200 cycles. The AgNWs/MXene/SEBS tensile sensors were subjected to array testing and finger bending recognition, and the sensors have promising applications in human motion monitoring.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 6","pages":"684 - 693"},"PeriodicalIF":2.1,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141920465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linear Conductance Modulation in Aluminum Doped Resistive Switching Memories for Neuromorphic Computing 用于神经形态计算的掺铝电阻开关存储器中的线性电导调制
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2024-08-09 DOI: 10.1007/s13391-024-00516-w
Young-Woong Song, Junseo Lee, Sein Lee, Wooho Ham, Jeong Hyun Yoon, Jeong-Min Park, Taehoon Sung, Jang-Yeon Kwon
{"title":"Linear Conductance Modulation in Aluminum Doped Resistive Switching Memories for Neuromorphic Computing","authors":"Young-Woong Song,&nbsp;Junseo Lee,&nbsp;Sein Lee,&nbsp;Wooho Ham,&nbsp;Jeong Hyun Yoon,&nbsp;Jeong-Min Park,&nbsp;Taehoon Sung,&nbsp;Jang-Yeon Kwon","doi":"10.1007/s13391-024-00516-w","DOIUrl":"10.1007/s13391-024-00516-w","url":null,"abstract":"<div><p>With the advent of artificial intelligence (AI), automated machines could replace human labor in the near future. Nevertheless, AI implementation is currently confined to environments with huge power supplies and computing resources. Artificial neural networks are only implemented at the software level, which necessitates the continual retrieval of synaptic weights among devices. Physically constructing neural networks using emerging nonvolatile memories allows synaptic weights to be directly mapped, thereby enhancing the computational efficiency of AI. While resistive switching memory (RRAM) represents superior performances for in-memory computing, unresolved challenges persist regarding its nonideal properties. A significant challenge to the optimal performance of neural networks using RRAMs is the nonlinear conductance update. Ionic hopping of oxygen vacancy species should be thoroughly investigated and controlled for the successful implementation of RRAM-based AI acceleration. This study dopes tantalum oxide-based RRAM with aluminum, thus improving the nonlinear conductance modulation during the resistive switching process. As a result, the simulated classification accuracy of the trained network was significant improved.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 6","pages":"725 - 732"},"PeriodicalIF":2.1,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141923615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrangea Macrophylla-Like CeO2 Coated by Nitrogen-Doped Carbon as Highly Efficient ORR Cathode Catalyst in a Hybrid Proton Battery 掺氮碳包覆的绣球花状 CeO2 作为混合质子电池中的高效 ORR 阴极催化剂
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2024-08-05 DOI: 10.1007/s13391-024-00515-x
Rui Zhang, Huizhen Si, Qizhao Hu, Yangbo Cui, Shangbin Sang, Kaiyu Liu, Hongtao Liu, Qiumei Wu, Xianggong Zhang
{"title":"Hydrangea Macrophylla-Like CeO2 Coated by Nitrogen-Doped Carbon as Highly Efficient ORR Cathode Catalyst in a Hybrid Proton Battery","authors":"Rui Zhang,&nbsp;Huizhen Si,&nbsp;Qizhao Hu,&nbsp;Yangbo Cui,&nbsp;Shangbin Sang,&nbsp;Kaiyu Liu,&nbsp;Hongtao Liu,&nbsp;Qiumei Wu,&nbsp;Xianggong Zhang","doi":"10.1007/s13391-024-00515-x","DOIUrl":"10.1007/s13391-024-00515-x","url":null,"abstract":"<div><p>In this paper, nitrogen-doped carbon (NC) coated tens nanometer hydrangea macrophylla-like CeO<sub>2</sub>(CeO<sub>2</sub>-NC) was synthesized by simple hydrothermal and polymeric calcination approach. Samples are characterised by SEM, Raman spectroscopy, XPS, etc. CeO<sub>2</sub>-NC shows an initial potential of 0.90V (vs. Ag/AgCl) in 9.5 M H<sub>3</sub>PO<sub>4</sub>. In addition, the CeO<sub>2</sub>-NC composite also exhibits a high limiting current (6.25 mA mg<sup>−1</sup>). CeO<sub>2</sub>-NC effectively combines the high initial potential of CeO<sub>2</sub> with the high limiting current of NC. Moreover, a hybrid proton battery assembled with CeO<sub>2</sub>-NC composite as the cathode catalyst and MoO<sub>3</sub> (1 mg) as anode catalyst can produce a high capacity of 261.7 mAh at 1 A g<sup>−1</sup>. The hybrid battery also exhibits excellent catalytic stability. After 1000 cycles at a high current density of 15 A g<sup>−1</sup>, the capacity of the battery still remains 125.0 mAh, with a retention rate of approximately 90.9%. The improvement in battery performance is due to the use of NC to coat CeO<sub>2</sub>, which improves the limiting current and durability of the electrode. The presented hybrid proton batteries have further enriched the application of electrochemical energy storage devices, and the preliminary exploration of cathode catalysts significantly improved the catalytic performance of ORR under acidic conditions.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 6","pages":"807 - 817"},"PeriodicalIF":2.1,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141932532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Electronic Structure and Magnetic Properties of Sm2MgMnO6 Double Perovskite 探索 Sm2MgMnO6 双包晶石的电子结构和磁性能
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2024-08-01 DOI: 10.1007/s13391-024-00512-0
Samarendra Nath Saha, Purna Chandra Barman, N. Bedamani Singh, Rajkumar Mondal, Sk. Anirban
{"title":"Exploring the Electronic Structure and Magnetic Properties of Sm2MgMnO6 Double Perovskite","authors":"Samarendra Nath Saha,&nbsp;Purna Chandra Barman,&nbsp;N. Bedamani Singh,&nbsp;Rajkumar Mondal,&nbsp;Sk. Anirban","doi":"10.1007/s13391-024-00512-0","DOIUrl":"10.1007/s13391-024-00512-0","url":null,"abstract":"<div><p>In this article, we have investigated the electronic structure and magnetic properties of Sm<sub>2</sub>MgMnO<sub>6</sub> prepared through auto-combustion method. The first principles of the density-functional theory have been applied to study of the electronic structure. The oxidation states of Mn and Mg are Mn<sup>3+</sup>/Mn<sup>4+</sup> and Mg<sup>2+</sup>, respectively. The existence of Mn<sup>3+</sup> is higher than Mn<sup>4+</sup>. The magnetic study reveals the sample shows ferromagnetic to paramagnetic transition at around 13.5 K which is followed by an antiferromagnetic ordering at 8.3 K. Antiferromagnetic and ferromagnetic ordering have been identified at 8.3 K and higher temperature, respectively. Sm<sub>2</sub>MgMnO<sub>6</sub> shows a maximum magnetic entropy change of 1.25 J kg<sup>-1</sup>K<sup>-1</sup> and relative cooling power of 86.9 J/kg for a field variation of 70 kOe near 25 K. The values are comparable to many double perovskites reported previously. This study highlights that Sm<sub>2</sub>MgMnO<sub>6</sub> is a potential material for magnetocaloric refrigerant at low temperature.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 6","pages":"745 - 755"},"PeriodicalIF":2.1,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141863940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights on Asymmetrical Electrode Geometric Effect to Enhance Gate-Drain-Bias Stability of Vertical-Channel InGaZnO Thin-Film Transistor 非对称电极几何效应对增强垂直沟道 InGaZnO 薄膜晶体管栅漏偏压稳定性的启示
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2024-07-30 DOI: 10.1007/s13391-024-00513-z
Dong-Hee Lee, Young-Ha Kwon, Nak-Jin Seong, Kyu-Jeong Choi, Jong-Heon Yang, Chi-Sun Hwang, Sung-Min Yoon
{"title":"Insights on Asymmetrical Electrode Geometric Effect to Enhance Gate-Drain-Bias Stability of Vertical-Channel InGaZnO Thin-Film Transistor","authors":"Dong-Hee Lee,&nbsp;Young-Ha Kwon,&nbsp;Nak-Jin Seong,&nbsp;Kyu-Jeong Choi,&nbsp;Jong-Heon Yang,&nbsp;Chi-Sun Hwang,&nbsp;Sung-Min Yoon","doi":"10.1007/s13391-024-00513-z","DOIUrl":"10.1007/s13391-024-00513-z","url":null,"abstract":"<div><p>The asymmetrical gate-drain bias stress (GDBS) stability of a mesa-shaped vertical-channel thin-film transistors (VTFTs) was investigated using an In-Ga-Zn–O (IGZO) active layer prepared by atomic-layer deposition. The GDBS measurements were conducted with variations in electrode configurations and overlapped areas between the active and bottom electrode regions. The GDBS stability of the IGZO VTFTs was found to be significantly degraded, when a plasma-damaged electrode was used as the drain electrode, due to the formation of defective channel regions that are more susceptible to the hot carrier effect. To address the effect of plasma-damaged electrode, an ultrathin passivation layer was introduced, resulting in the achievement of VTFTs with excellent and uniform GDBS stability.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 6","pages":"702 - 710"},"PeriodicalIF":2.1,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141863941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of Ultrathin MoO2 Nanosheets via Chemical Vapor Deposition and Their Application to High-Performance Field-Effect Transistors 通过化学气相沉积合成超薄二氧化锰纳米片及其在高性能场效应晶体管中的应用
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2024-07-27 DOI: 10.1007/s13391-024-00511-1
Jun Hu Park, Seung Min Joo, Tae Min Kim, Younghoon Kim, Hyun Ho Kim
{"title":"Synthesis of Ultrathin MoO2 Nanosheets via Chemical Vapor Deposition and Their Application to High-Performance Field-Effect Transistors","authors":"Jun Hu Park,&nbsp;Seung Min Joo,&nbsp;Tae Min Kim,&nbsp;Younghoon Kim,&nbsp;Hyun Ho Kim","doi":"10.1007/s13391-024-00511-1","DOIUrl":"10.1007/s13391-024-00511-1","url":null,"abstract":"<div><p>Two-dimensional (2D) transition metal dichalcogenides (TMDs) are excellent candidates for electronic applications because of their high carrier mobility, tunable bandgap energy depending on the number of layers, monolayer thickness, and the absence of dangling bonds on their surfaces. Despite these advantages, the crystalline structures of TMDs contain intrinsic defects such as vacancies, adatoms, grain boundaries, and substitutional impurities, which can cause large contact resistance at the source/drain interface. Customized engineering of interfaces and defects, which provides a method to modulate the properties of TMDs, is crucial as it can significantly enhance device performance. Herein, we explored a novel electrode to enhance the interface between electrode and semiconductor materials. we report the synthesis of high-quality atomically thin MoO<sub>2</sub> using atmospheric pressure chemical vapor deposition (APCVD) and its application to field-effect transistors. To improve crystallinity of MoO<sub>2</sub>, we investigated the influence of hydrogen concentration, a key parameter in the reduction process, on the synthesis of high-crystallinity MoO₂. By adding NaCl to MoO₃ powder, we optimized the synthesis of high-crystallinity MoO₂. Utilizing the optimized MoO₂, we fabricated transistors that exhibited a mobility of 29.1 cm²/V∙s and an on/off ratio of 1.78 × 10⁴, demonstrating excellent performance. Our findings confirm that single-crystal MoO<sub>2</sub> can be effectively applied as a contact electrode in high-performance two-dimensional semiconductor devices.</p></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 6","pages":"818 - 826"},"PeriodicalIF":2.1,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Significant Mobility Enhancement by Semicrystalline Polymers Additive for Crystallization and Charge Transport in Organic Field-effect Transistor 半晶体聚合物添加剂显著提高有机场效应晶体管的结晶和电荷传输迁移率
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2024-07-24 DOI: 10.1007/s13391-024-00510-2
Sheng Bi, Zehui Yao, Xu Han, Congjie Bi, Xiaolong Wang, Qiangqiang Chen, Yao Wang, Rongyi Wang, Kyeiwaa Asare-Yeboah, Zhengran He, Ruonan Song
{"title":"Significant Mobility Enhancement by Semicrystalline Polymers Additive for Crystallization and Charge Transport in Organic Field-effect Transistor","authors":"Sheng Bi,&nbsp;Zehui Yao,&nbsp;Xu Han,&nbsp;Congjie Bi,&nbsp;Xiaolong Wang,&nbsp;Qiangqiang Chen,&nbsp;Yao Wang,&nbsp;Rongyi Wang,&nbsp;Kyeiwaa Asare-Yeboah,&nbsp;Zhengran He,&nbsp;Ruonan Song","doi":"10.1007/s13391-024-00510-2","DOIUrl":"10.1007/s13391-024-00510-2","url":null,"abstract":"<div><p>The incorporation of semi-crystalline polymers as additives with small-molecule organic semiconductors has emerged as a pioneering method for the alteration of crystallization processes, thin film morphologies, and charge carrier mobility within organic semiconductor matrices. In this paper, we utilize the intrinsic attributes of polyethylene oxide (PEO), acting as a semi-crystalline polymer additive, to modulate the crystallization, phase segregation and charge transport of 6,13-bis (triisopropylsilyl) pentacene (TIPS pentacene). To understand the synergistic effects between varying molecular weights (8, 100, 300 and 900 K) of PEO and the crystallization behavior of TIPS pentacene, we conducted a quantitative analysis of the films' relative crystallinity and crystallographic morphology employing X-ray diffraction (XRD) and optical microscopy. Our findings indicate that higher molecular weight PEOs (300K and 900K) exhibit reduced molecular chain activity, resulting in lower crystallinity at increased doping ratios. Furthermore, attributes such as a high dielectric constant and a substantial melting point, combined with favorable thermoplastic properties, predispose these films to a more susceptible phase separation within the crystalline matrix. Conversely, films with lower molecular weight PEOs (8 and 100 K) showed lesser impact from molecular chain dynamics, leading to enhanced crystal morphology, higher crystallinity, and improved charge carrier mobility by up to 11 times. This substantial enhancement underscores the potential of employing low molecular weight semi-crystalline polymers as additive agents in the development of advanced organic semiconductor devices.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 6","pages":"711 - 724"},"PeriodicalIF":2.1,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信