Electronic Materials Letters最新文献

筛选
英文 中文
Correction: The Copper Oxide with Alkali Potassium Dopant for Heterojunction Solar Cells Application 更正:应用于异质结太阳能电池的碱钾掺杂氧化铜
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2024-07-05 DOI: 10.1007/s13391-024-00507-x
Katarzyna Gawlińska-Nęcek, Zbigniew Starowicz, Marta Janusz-Skuza, Anna Jarzębska, Piotr Panek
{"title":"Correction: The Copper Oxide with Alkali Potassium Dopant for Heterojunction Solar Cells Application","authors":"Katarzyna Gawlińska-Nęcek, Zbigniew Starowicz, Marta Janusz-Skuza, Anna Jarzębska, Piotr Panek","doi":"10.1007/s13391-024-00507-x","DOIUrl":"10.1007/s13391-024-00507-x","url":null,"abstract":"","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 5","pages":"557 - 558"},"PeriodicalIF":2.1,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141547014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the Electrical Characteristics of Electrochemical Metallization Memristors through Identification of Conduction Channel in Entire Active Area 通过识别整个有源区的传导通道了解电化学金属化晶体管的电气特性
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2024-07-05 DOI: 10.1007/s13391-024-00509-9
Dokyun Kim, Unggi Kim, Sungjae Choi, Young-Chang Joo
{"title":"Understanding the Electrical Characteristics of Electrochemical Metallization Memristors through Identification of Conduction Channel in Entire Active Area","authors":"Dokyun Kim,&nbsp;Unggi Kim,&nbsp;Sungjae Choi,&nbsp;Young-Chang Joo","doi":"10.1007/s13391-024-00509-9","DOIUrl":"10.1007/s13391-024-00509-9","url":null,"abstract":"<div><p>Physical observation of electrochemical metallization (ECM) channel is required for understanding the electrical characteristics of ECM memristors. Although numerous studies have explored to identify the ECM channels, the majority of approaches have been limited to in-situ systems and localized areas, lacking a comprehensive demonstration of their findings. This study focuses on interpreting the different electrical characteristics of ECM memristors through identification of ECM channels using a new method inspired by etch pit detection on Si surface for determining copper contamination. Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM) were utilized to detect and analyze conductive channels within the switching medium after real operation. Interestingly, devices with insulating amorphous carbon (a-C) as medium layer exhibited multiple channels, while devices with semiconducting a-C layers showed a single channel in the on-state. Furthermore, devices with a single channel demonstrated more uniform switching parameters, including high resistance state and set voltage, compared to devices with multiple channels. However, devices with multiple channels exhibited better retention properties .In addition, intermetallic conductive channels were confirmed, resulting from the mixing of Cu active metal ions with the Pt bottom electrode in high current density conditions. The findings of this work provide valuable insights into interpreting ECM memristor performance based on the formation of channels and inspire device design strategies for improving device performance.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 5","pages":"525 - 536"},"PeriodicalIF":2.1,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141547018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal and Electrical Properties Depending on the Bonding Structure of Amorphous Carbon Thin Films 取决于非晶碳薄膜键合结构的热性能和电性能
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2024-07-03 DOI: 10.1007/s13391-024-00508-w
Jae Young Hwang, Dokyun Kim, Hyejin Jang, So-Yeon Lee, Young-Chang Joo
{"title":"Thermal and Electrical Properties Depending on the Bonding Structure of Amorphous Carbon Thin Films","authors":"Jae Young Hwang,&nbsp;Dokyun Kim,&nbsp;Hyejin Jang,&nbsp;So-Yeon Lee,&nbsp;Young-Chang Joo","doi":"10.1007/s13391-024-00508-w","DOIUrl":"10.1007/s13391-024-00508-w","url":null,"abstract":"<div><p>Efficient heat energy management during operation remains a critical challenge in Phase Change Memory (PCM) devices. Reducing the thermal conductivity of electrodes has emerged as a promising strategy to address this issue. Amorphous carbon (a-C) thin films present an attractive option for PCM electrodes due to their intrinsically low thermal conductivity and tunable electrical properties. This study focuses on the development of a-C thin films with optimized electrical and thermal characteristics by controlling the sputtering pressure and conducting post-annealing treatments. Various analytical techniques, including X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and Raman spectroscopy, were employed to investigate the microstructure and composition of the a-C thin films. The results demonstrate that the optimal condition for achieving improved electrical and thermal properties is at the lowest sputtering pressure (2.5 mTorr), which is attributed to the reduced impurity content (specifically oxygen and hydrogen) and denser film structure. Furthermore, post-annealing treatment at 400 °C for 30 min resulted in further improvements in thermal and electrical properties due to the formation of sp<sup>2</sup> clusters and the reduction of impurities within the film. Consequently, the post-annealed a-C thin film exhibited an outstanding low thermal conductivity of 1.34 W m<sup>−1</sup> K<sup>−1</sup> and an adequate electrical resistivity of 0.02 Ω cm. The findings of this work provide valuable insights into the underlying mechanisms governing the electrical and thermal properties of a-C thin films, paving the way for the development of energy-efficient PCM devices.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 5","pages":"648 - 656"},"PeriodicalIF":2.1,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141522278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Deposition Temperature on the Electrical Properties of Solid-Phase Crystallized Ge Thin Films 沉积温度对固相结晶 Ge 薄膜电学特性的影响
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2024-06-24 DOI: 10.1007/s13391-024-00506-y
Youngho Cho, Mingjun Jiang, Donghwan Ahn, Woong Choi
{"title":"Effect of Deposition Temperature on the Electrical Properties of Solid-Phase Crystallized Ge Thin Films","authors":"Youngho Cho,&nbsp;Mingjun Jiang,&nbsp;Donghwan Ahn,&nbsp;Woong Choi","doi":"10.1007/s13391-024-00506-y","DOIUrl":"10.1007/s13391-024-00506-y","url":null,"abstract":"<div><p>We report the effect of deposition temperature, spanning from 30 °C to 200 °C, on the electrical properties of solid-phase crystallized Ge thin films on SiO<sub>2</sub>/Si substrates. Our findings revealed three distinct ranges of deposition temperature, each exhibiting unique electrical properties. The initial thin films were amorphous with low density in the first range (below 100 °C), amorphous with high density in the second range (between 100 °C and 160 °C), and crystalline with high density in the third range (above 160 °C). In the first and second ranges, an increase in deposition temperature led to a fivefold increase in Hall mobility. This was attributed to the enlarged grain size and reduced energy barrier at grain boundaries possibly owing to the reduced concentration of oxygen impurities. Grain boundary scattering dominated carrier transport in the first range, while diminished energy barrier in the second range effectively mitigated grain boundary scattering. In the third range, an increase in deposition temperature resulted in a decrease in the Hall mobility. This may be linked to the reduced grain size. These results demonstrate the profound impact of deposition temperature on tailoring the electrical properties of polycrystalline Ge thin films, with potential implications for semiconductor processing.</p></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 6","pages":"694 - 701"},"PeriodicalIF":2.1,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141505343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Advances in Reversible Metal Electrodeposition-Based Smart Windows 基于可逆金属电沉积的智能窗口的最新进展
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2024-06-22 DOI: 10.1007/s13391-024-00505-z
Gwan Hyeong Lee, Chi Jun An, Hyung Il Lee, Ji Seong Kim, Min Seo Jo, Tae Hoon Ha, Kyungnae Baek, Cheon Woo Moon
{"title":"Recent Advances in Reversible Metal Electrodeposition-Based Smart Windows","authors":"Gwan Hyeong Lee,&nbsp;Chi Jun An,&nbsp;Hyung Il Lee,&nbsp;Ji Seong Kim,&nbsp;Min Seo Jo,&nbsp;Tae Hoon Ha,&nbsp;Kyungnae Baek,&nbsp;Cheon Woo Moon","doi":"10.1007/s13391-024-00505-z","DOIUrl":"10.1007/s13391-024-00505-z","url":null,"abstract":"<div><p>Smart windows are significant for their energy-saving function and visual comfort in our daily lives. This review focuses on the latest advancements in reversible metal electrodeposition (RME) smart window technology, examining related issues primarily in terms of long-term operation, high-contrast, and color neutrality in the privacy state. The electrolyte condition is crucial as it significantly impacts factors like nucleation and growth, Faradaic efficiency of optical cycling, bistability, color neutrality, and repeatability. Overcoming these bottlenecks requires designing an appropriate combination of metal ions and additives in the electrolyte. Although aqueous electrolytes have been predominantly used due to their cost-effectiveness, their narrow electrochemical window has raised concerns for real applications. This limitation would lead to the generation of hydrogen or oxygen gases, potentially damaging smart windows. Recent developments have considered non-aqueous electrolytes as a solution, offering a wider electrochemical window, broader operational temperature ranges, and long-term electrolyte stability. These could be key to overcoming the current challenges in smart windows. This review summarizes recent developments in RME smart windows, addressing their current characteristics, improvements, and limitations to provide insights into future pathways for reversible metal electrodeposition-based smart window development.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 6","pages":"657 - 683"},"PeriodicalIF":2.1,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141529131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-deposition of Amorphous Carbon and CdS with the Host NiO HMs for Superior Photocatalytic H2 Production via Water Splitting 无定形碳和 CdS 与宿主 NiO HMs 共同沉积,通过水分离实现卓越的光催化 H2 生产
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2024-06-16 DOI: 10.1007/s13391-024-00503-1
Hanmei Hu, Fang Ye, Tao Wang, Rui Xu, Yibin Zhu, Chonghai Deng
{"title":"Co-deposition of Amorphous Carbon and CdS with the Host NiO HMs for Superior Photocatalytic H2 Production via Water Splitting","authors":"Hanmei Hu,&nbsp;Fang Ye,&nbsp;Tao Wang,&nbsp;Rui Xu,&nbsp;Yibin Zhu,&nbsp;Chonghai Deng","doi":"10.1007/s13391-024-00503-1","DOIUrl":"10.1007/s13391-024-00503-1","url":null,"abstract":"<div><p>Efficient spatial separation of photocarriers is crucial for photocatalyst to achieve superior solar-driven photocatalytic H<sub>2</sub> production via water splitting. In this study, 3D cubic NiO hollow microspheres (HMs) was served as a free-standing supporting matrix for the co-deposition of ultrathin amorphous carbon layer and wurtzite CdS nanoparticles (NPs) to obtain the highly efficient photocatalysis system for H<sub>2</sub> production. The crystal structure, chemical composition, and optical and electric properties of the ternary C@CdS/NiO composite were characterized by various techniques. The results demonstrated that integrated C@CdS/NiO heteroarchitectures with flower-like morphology and double interfacial combinations are successfully constructed through a one-pot microwave heating process. Under simulated solar illumination, the photocatalytic H<sub>2</sub> evolution reaction (HER) efficiency of as-resulting C@CdS/NiO composite reached a remarkable 17.99 mmol∙g<sup>− 1</sup>∙h<sup>− 1</sup>, which was 5.7 and 163.5 times higher than that of binary CdS/NiO hybrid and single CdS, respectively. The photo-electrochemical measurements disclosed that the double interfacial interactions are beneficial for promoting the photoexcited charge carriers separation in space. Specifically, the ultrathin carbon film played multiple roles for achievement of exceptional photocatalytic activity as follows: (i) having increase of the active sites, (ii) promoting light absorption capacity, (iii) accelerating separation and transport of the photocarriers, and (iv) protecting CdS against photocorrosion. This study provides a facial synergistic modification strategy for the construction of noble-metal-free photocatalysts for efficient solar-to-fuel conversion.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 5","pages":"627 - 638"},"PeriodicalIF":2.1,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141336308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving Photocatalytic Activities of LaFeO3 Photocathode by Chromium-Incorporated Nanoparticle 通过加入铬纳米粒子提高 LaFeO3 阴极的光催化活性
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2024-06-16 DOI: 10.1007/s13391-024-00504-0
Amin Aadenan, Nurul Affiqah Arzaee, Mohamad Firdaus Mohamad Noh, Mohd Norizam Md Daud, Danial Hakim Badrul Hisham, Muhammad Athir Mohamed Anuar, Muslizainun Mustapha, Nurul Aida Mohamed, Mohd Hafiz Ahmad, Mohd Adib Ibrahim, Norasikin Ahmad Ludin, Mohd Asri Mat Teridi
{"title":"Improving Photocatalytic Activities of LaFeO3 Photocathode by Chromium-Incorporated Nanoparticle","authors":"Amin Aadenan,&nbsp;Nurul Affiqah Arzaee,&nbsp;Mohamad Firdaus Mohamad Noh,&nbsp;Mohd Norizam Md Daud,&nbsp;Danial Hakim Badrul Hisham,&nbsp;Muhammad Athir Mohamed Anuar,&nbsp;Muslizainun Mustapha,&nbsp;Nurul Aida Mohamed,&nbsp;Mohd Hafiz Ahmad,&nbsp;Mohd Adib Ibrahim,&nbsp;Norasikin Ahmad Ludin,&nbsp;Mohd Asri Mat Teridi","doi":"10.1007/s13391-024-00504-0","DOIUrl":"10.1007/s13391-024-00504-0","url":null,"abstract":"<div><p>Incorporation of chromium (Cr) nanoparticle onto LaFeO<sub>3</sub> (LFO) photocathode to improve optical and photocatalytic activities have been successfully demonstrated. The plain LFO photocathode was prepared by spin-spray gun deposition, following the Cr-incorporated nanoparticle onto the photocathode by spin coating method. It is observed that the photocathode with the optimal composition of 1.5 mmol Cr nanoparticle enhanced the crystal growth of orthorhombic crystal structure predominantly on (121) orientation with the formation of well-connected crystal grain architecture. The structure demonstrated strong optical absorption and a high current density of -60.52 µA cm<sup>− 2</sup> at -0.5 V (vs. Ag/AgCl) more than twice to the untreated LFO film which recorded a maximum photocurrent of -21.83 µA cm<sup>− 2</sup> at -0.5 V (vs. Ag/AgCl). This subsequently led to suppressed surface recombination, lower charge resistance and good stability in the strong alkaline electrolyte. The enhancement provided that incorporating a transition metal element with plain LFO would be applicable for producing efficient photosensitive devices, particularly for photoelectrochemical (PEC) water splitting applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 6","pages":"775 - 790"},"PeriodicalIF":2.1,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141335497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of the Number of Graphene Layers and Graphene Diaphragm Size on High Frequency Electrostatic Speakers 石墨烯层数和石墨烯振膜尺寸对高频静电扬声器的影响
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2024-05-30 DOI: 10.1007/s13391-024-00501-3
Dong-Kwan Lee, Jongchan Yoo, Byung-Ho Kang, Sung-Hoon Park
{"title":"Effects of the Number of Graphene Layers and Graphene Diaphragm Size on High Frequency Electrostatic Speakers","authors":"Dong-Kwan Lee,&nbsp;Jongchan Yoo,&nbsp;Byung-Ho Kang,&nbsp;Sung-Hoon Park","doi":"10.1007/s13391-024-00501-3","DOIUrl":"10.1007/s13391-024-00501-3","url":null,"abstract":"<div><p>Graphene, a promising carbon nanomaterial, has garnered significant attention owing to its chemical stability, exceptional mechanical properties, and remarkable electrical conductivity and is being used in various electrical engineering applications ranging from solar cells to touch screens. The inherent mechanical strength and electric charge capacity of graphene enable efficient designs of diaphragms used in electrostatic loudspeakers, specifically within the high-frequency domain. This study incorporated single-layer and multi-layer graphene sheets, synthesized via chemical vapor deposition, as electrically charged diaphragms in electrostatic loudspeakers paired with an indium tin oxide film electrode to produce Coulomb force. Subsequently, the sound pressure levels of these distinct graphene- based electrostatic loudspeakers were determined through frequency response measurements. Based on our findings, we propose an optimal graphene film configuration for future electrostatic loudspeaker applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 5","pages":"621 - 626"},"PeriodicalIF":2.1,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141196148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation and Comparative Studies on Charge Storage Performance in Nanostructured RuO2, NiO and Co3O4 Nanoparticles for High Dense Energy Storage 用于高密度储能的纳米结构 RuO2、NiO 和 Co3O4 纳米粒子的电荷存储性能调查与比较研究
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2024-05-24 DOI: 10.1007/s13391-024-00500-4
C. Sambathkumar, K. R. Nagavenkatesh, R. Thangavel, N. Nallamuthu, P. Devendran, K. Rajesh
{"title":"Investigation and Comparative Studies on Charge Storage Performance in Nanostructured RuO2, NiO and Co3O4 Nanoparticles for High Dense Energy Storage","authors":"C. Sambathkumar,&nbsp;K. R. Nagavenkatesh,&nbsp;R. Thangavel,&nbsp;N. Nallamuthu,&nbsp;P. Devendran,&nbsp;K. Rajesh","doi":"10.1007/s13391-024-00500-4","DOIUrl":"10.1007/s13391-024-00500-4","url":null,"abstract":"<div><p>Increasing energy requirement and over energy consumption and further upgrading of energy transfer and storage mechanisms are the critical problem. The supercapacitor is a good candidate for applications requiring high power delivery or uptake. Metal oxides can be effective electrode materials for energy storage devices due to their multiple oxidation states, high theoretical specific capacitance, wide potential window and eco-friendliness. In this connection, here report that electrodes made of notable nanosized transition metal oxides such as Ruthenium oxide (RuO<sub>2</sub>), Nickel oxide (NiO) and Cobalt oxide (Co<sub>3</sub>O<sub>4</sub>) were prepared by simple hydrothermal route and the prepared samples were confirmed through structural, vibrational, morphological, and elemental composition analysis. The modified working electrodes were then examined for electrochemical behavior, including CV, GCD, and EIS studies, using a 1 M KOH electrolyte solution after successive coating of the working material on empty Ni foil. Among them, RuO<sub>2</sub> has high integral area, a low sweep rate and remarkable specific capacitance value of 447.1 Fg<sup>-1</sup> at 5 mVs<sup>-1</sup> in CV analysis. In addition, the GCD curve has good charge-discharge cyclic stability with a maximum specific capacitance of 412.1 Fg<sup>-1</sup> at 0.5 Ag<sup>-1</sup> compared to NiO and Co<sub>3</sub>O<sub>4</sub>. RuO<sub>2</sub> has long charge-discharge stability and only 6.8% loss in capacitive retention compared to the other systems, NiO (11.2%) and Co<sub>3</sub>O<sub>4</sub> (9.3%), even after 10,000 cycles. We except that use of nanosized metal oxide electrodes to enhance electrochemical activity will lead to further improvement in the supercapacitors.</p></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 5","pages":"571 - 583"},"PeriodicalIF":2.1,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141101975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ZIF-Derived Cobalt Sulfides Embedded on Nitrogen-Doped Carbon Frameworks for Efficient Hydrogen Evolution Reaction 嵌入掺氮碳框架的 ZIF 衍生硫化钴,用于高效氢气进化反应
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2024-05-24 DOI: 10.1007/s13391-024-00502-2
Joon Soo Rhie, Ha Huu Do, Soo Young Kim
{"title":"ZIF-Derived Cobalt Sulfides Embedded on Nitrogen-Doped Carbon Frameworks for Efficient Hydrogen Evolution Reaction","authors":"Joon Soo Rhie,&nbsp;Ha Huu Do,&nbsp;Soo Young Kim","doi":"10.1007/s13391-024-00502-2","DOIUrl":"10.1007/s13391-024-00502-2","url":null,"abstract":"<div><p>The development of efficient and durable catalysts for the hydrogen evolution reaction (HER) is essential for sustainable energy research. Cobalt sulfides (CoS<sub>x</sub>) have attracted significant interest as prospective catalysts for the HER owing to their promising catalytic activity and high stability. In this study, CoS<sub>x</sub> nanocrystals embedded in nitrogen-doped carbon frameworks (NC) are fabricated using a zeolite imidazole framework precursor via a two-step pyrolysis-sulfurization process, followed by combination with carbon black (CB) to create CoS<sub>x</sub>-NC/CB as an efficient electrocatalyst for the HER. Interestingly, this catalyst displays a higher HER activity than that of the investigated materials, with an overpotential of 282 mV at a current density of 10 mA cm<sup>− 2</sup>, along with a Tafel slope of 57.6 mV dec<sup>− 1</sup> in an acidic solution. This performance is attributed to the synergistic effect of CoS<sub>x</sub> nanoparticles, nitrogen-doped carbon, and highly conductive CB, which improves the number of active sites, electron transfer, and electrochemical surface area. This outcome has significant potential for the development of economically viable catalysts for water splitting.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 5","pages":"639 - 647"},"PeriodicalIF":2.1,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141102659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信