Electronic Materials Letters最新文献

筛选
英文 中文
Improved Catalytic Properties of Fluorine-Doped La0.6Sr0.4Co0.2Fe0.8O3-δ for Air Electrode with High-Performance Metal-Air Batteries 用于高性能金属-空气电池空气电极的掺氟 La0.6Sr0.4Co0.2Fe0.8O3-δ 催化性能的改进
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2024-01-31 DOI: 10.1007/s13391-023-00483-8
Jiyoun Kim, Jeongah Lee, Sangwoo Kim, WooChul Jung
{"title":"Improved Catalytic Properties of Fluorine-Doped La0.6Sr0.4Co0.2Fe0.8O3-δ for Air Electrode with High-Performance Metal-Air Batteries","authors":"Jiyoun Kim,&nbsp;Jeongah Lee,&nbsp;Sangwoo Kim,&nbsp;WooChul Jung","doi":"10.1007/s13391-023-00483-8","DOIUrl":"10.1007/s13391-023-00483-8","url":null,"abstract":"<div><p>La<sub>0.6</sub>Sr<sub>0.4</sub>Co<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3-δ</sub> (LSCF), a perovskite material, is widely recognized as an excellent catalyst for the oxygen evolution reaction (OER). An anion doping strategy was implemented to enhance the presence of highly oxidation-active O<sup>2−</sup>/O<sup>−</sup> species crucial for the electrochemical reaction, effectively replacing oxygen. The introduction of 5 mol% fluorine to LSCF resulted in improved OER performance, comparable to that of commercial noble catalysts. Furthermore, we confirmed that fluorine-doped LSCF enhanced the oxygen reduction reaction (ORR) performance, establishing its effectiveness as a bifunctional catalyst. Moreover, when utilized as an air electrode in a homemade zinc-air battery cell, the electrochemical performance of the doped LSCF remained stable after repeated charge/discharge tests. These findings underscore the potential application of anion doping in electrochemical devices.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 4","pages":"450 - 458"},"PeriodicalIF":2.1,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13391-023-00483-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139668279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large-Area Quantum Dot Light-Emitting Diodes Employing Sputtered Zn0.85Mg0.15O Electron Transport Material 采用溅射 Zn0.85Mg0.15O 电子传输材料的大面积量子点发光二极管
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2024-01-30 DOI: 10.1007/s13391-023-00482-9
Bomi Kim, Jiwan Kim
{"title":"Large-Area Quantum Dot Light-Emitting Diodes Employing Sputtered Zn0.85Mg0.15O Electron Transport Material","authors":"Bomi Kim,&nbsp;Jiwan Kim","doi":"10.1007/s13391-023-00482-9","DOIUrl":"10.1007/s13391-023-00482-9","url":null,"abstract":"<div><p>We report a large-area quantum dot light-emitting diode (QLED) with sputtered Zn<sub>0.85</sub>Mg<sub>0.15</sub>O (ZMO) as an electron transport layer (ETL). Uniform ZMO is applied as ETL of the inverted structured QLED and the adjustment of Ar/O<sub>2</sub> ratio on device characteristics is studied in detail. Compared to pristine ZMO, ZMOs with O<sub>2</sub> gas are found to be beneficial to the charge balance in the emitting layer of QLEDs mainly by their upshifted conduction band minimum, which in turn limits an electron injection. Additionally, it is found that oxygen vacancies in the ZMO, acting as the exciton quenching sites, are responsible for the device stability. QLEDs with 6:1 ZMO produce a maximum luminance of 136,257 cd/m<sup>2</sup> and external quantum efficiency of 5.15%, which are the best device performances to date among QLEDs with sputtered ETLs. These results indicate that the sputtered ZMO shows great promise for use as an inorganic ETL for future large-area QLEDs.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 2","pages":"140 - 149"},"PeriodicalIF":2.1,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139588696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2D Layered (CH3NH3)3Sb2ClxI9−x Lead-Free Perovskite for Weak Light Detection 用于弱光探测的二维层状 (CH3NH3)3Sb2ClxI9-x 无铅过氧化物
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2024-01-25 DOI: 10.1007/s13391-023-00480-x
Amit Kumar Pathak, Sudip Mukherjee, Sudip K. Batabyal
{"title":"2D Layered (CH3NH3)3Sb2ClxI9−x Lead-Free Perovskite for Weak Light Detection","authors":"Amit Kumar Pathak,&nbsp;Sudip Mukherjee,&nbsp;Sudip K. Batabyal","doi":"10.1007/s13391-023-00480-x","DOIUrl":"10.1007/s13391-023-00480-x","url":null,"abstract":"<div><p>Weak light detection is a current research topic and chlorine-containing lead-free perovskite materials are promising. In this research work, Cl-incorporated methylammonium Sb mixed halide perovskite (CH<sub>3</sub>NH<sub>3</sub>)<sub>3</sub> (Sb)<sub>2</sub>(Cl)<sub>X</sub> I<sub>(9−X)</sub> derivatives were investigated for weak light detection. We have devised a solution-processable slow crystal growth (SCG) to fabricate 2D layered (CH<sub>3</sub>NH<sub>3</sub>)<sub>3</sub> (Sb)<sub>2</sub>(Cl)<sub>X</sub> I<sub>(9−X)</sub> lead-free perovskite microcrystals. SCG facilitate only 1.51 atomic percent chlorine incorporation confirmed in FESEM-EDS analysis and band gap 1.98 eV determines the SCG grown lead-free perovskite molecular formula to be (CH<sub>3</sub>NH<sub>3</sub>)<sub>3</sub> (Sb)<sub>2</sub>(Cl)<sub>X</sub> I<sub>(9−X)</sub>. FTO/ (CH<sub>3</sub>NH<sub>3</sub>)<sub>3</sub> (Sb)<sub>2</sub>(Cl)<sub>X</sub> I<sub>(9−X)</sub> PMCs/FTO self-powered photodetector detect 400 nm, 1µW cm<sup>−2</sup> weak optical signal. (CH<sub>3</sub>NH<sub>3</sub>)<sub>3</sub> (Sb)<sub>2</sub>(Cl)<sub>X</sub> I<sub>(9−X)</sub> respond to weak optical signals in the 300–600 nm wavelength range. Also, (CH<sub>3</sub>NH<sub>3</sub>)<sub>3</sub> (Sb)<sub>2</sub>(Cl)<sub>X</sub> I<sub>(9−X)</sub> exhibit a high reflectance (&gt; 70%) for the wavelength above 600 nm with its inherent thermodynamic stability is a candidate for use as a reflective layer in tandem solar cells.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 4","pages":"425 - 431"},"PeriodicalIF":2.1,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139552128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis by Electrolysis of Iron-Based Fluoride as Cathode Materials for Lithium Ion Batteries 通过电解合成作为锂离子电池阴极材料的铁基氟化物
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2024-01-10 DOI: 10.1007/s13391-023-00478-5
Zengzeng Zheng, Jin Shi, Xujie Xiao, Xu Li, Jingkang Chen, Chengfei Zhu
{"title":"Synthesis by Electrolysis of Iron-Based Fluoride as Cathode Materials for Lithium Ion Batteries","authors":"Zengzeng Zheng,&nbsp;Jin Shi,&nbsp;Xujie Xiao,&nbsp;Xu Li,&nbsp;Jingkang Chen,&nbsp;Chengfei Zhu","doi":"10.1007/s13391-023-00478-5","DOIUrl":"10.1007/s13391-023-00478-5","url":null,"abstract":"<div><p>The hydrated iron fluoride (Fe<sub>3</sub>F<sub>8</sub>·2H<sub>2</sub>O) with mixed valence cations is successfully synthesized through a rapid electrolytic synthesis route for the first time using low-concentration HF solution as fluorine source and cheap carbon steel as iron source. By controlling the value of current density, submicron structured hydrated iron fluoride with different grain sizes is obtained. The thermal behavior of Fe<sub>3</sub>F<sub>8</sub>·2H<sub>2</sub>O under air atmosphere is studied. The product cooling to room temperature after heat treatment is FeF<sub>2.2</sub>(OH)<sub>0.8</sub>·0.33H<sub>2</sub>O, which is determined by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), Fourier transform infrared spectrometer (FT-IR), and thermogravimetry/differential scanning calorimetry (TG/DSC). The evaluation of the electrochemical performance of FeF<sub>2.2</sub>(OH)<sub>0.8</sub>·0.33H<sub>2</sub>O as a cathode for lithium batteries shows that it has an initial discharge capacity as high as 580 mAh g<sup>−1</sup> in a wide voltage range of 1.0–4.5 V at a current density of 20 mA g<sup>−1</sup>, but the cycle performance is not very satisfactory, only 170 mAh g<sup>−1</sup> after 50 cycles.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 3","pages":"306 - 316"},"PeriodicalIF":2.1,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13391-023-00478-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139423465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
N-Doped Porous Carbon Encapsulated MnFe2O4 Nanoparticles as Advanced Anodes for Li-Ion Batteries 掺杂 N 的多孔碳封装 MnFe2O4 纳米粒子作为锂离子电池的先进阳极
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2024-01-02 DOI: 10.1007/s13391-023-00477-6
Taolin Zhao, Xinlei Zhang, Zezheng Liu, Qingyuan Gu, Xiaoyu Jin, Saihu Xie, Shuai Liu
{"title":"N-Doped Porous Carbon Encapsulated MnFe2O4 Nanoparticles as Advanced Anodes for Li-Ion Batteries","authors":"Taolin Zhao,&nbsp;Xinlei Zhang,&nbsp;Zezheng Liu,&nbsp;Qingyuan Gu,&nbsp;Xiaoyu Jin,&nbsp;Saihu Xie,&nbsp;Shuai Liu","doi":"10.1007/s13391-023-00477-6","DOIUrl":"10.1007/s13391-023-00477-6","url":null,"abstract":"<div><p>Transition metal oxide MnFe<sub>2</sub>O<sub>4</sub> is considered a promising anode material for Li-ion batteries owing to its high theoretical specific capacity. However, this material has two bottleneck problems, i.e., poor conductivity and serious volume expansion during cycling. In this work, MnFe<sub>2</sub>O<sub>4</sub> nanoparticles were successfully encapsulated in the matrix of N-doped porous carbon via a sol–gel method. As a result, the N-doped carbon matrix enhances the electronic conductivity of the composites. The special porous structure increases the contact area between the electrode material and the electrolyte and facilitates the rapid infiltration of the electrolyte. At a calcination temperature of 400 °C, the MnFe<sub>2</sub>O<sub>4</sub>/C composite shows a high initial discharge specific capacity of 1207.0 mAh g<sup>−1</sup> at 0.2 A g<sup>−1</sup> and retains a reversible specific capacity of 1100.1 mAh g<sup>−1</sup> after 200 cycles. The simple design of metal oxide nanomaterials encapsulated in N-doped porous carbon provides a new direction for improving the electrochemical performance of electrode materials for Li-ion batteries.</p><h3>Graphical Abstract</h3><p>A brief abstract: MnFe<sub>2</sub>O<sub>4</sub> nanoparticles were successfully encapsulated in the matrix of N-doped porous carbon via a sol–gel method. At a calcination temperature of 400 °C, the MnFe<sub>2</sub>O<sub>4</sub>/C composite shows a high initial discharge specific capacity of 1207.0 mAh g<sup>−1</sup> at 0.2 C and retains a reversible specific capacity of 1100.1 mAh g<sup>−1</sup> after 200 cycles.</p>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 3","pages":"317 - 325"},"PeriodicalIF":2.1,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139078184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient and Selective Oxygen Evolution Reaction in Seawater Electrolysis with Electrochemically Synthesized Amorphous-like NiFeS 电化学合成的非晶态类镍铁合金在海水电解中的高效和选择性氧气进化反应
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2023-12-19 DOI: 10.1007/s13391-023-00476-7
Daegeon Choi, Sangwoo Ryu
{"title":"Efficient and Selective Oxygen Evolution Reaction in Seawater Electrolysis with Electrochemically Synthesized Amorphous-like NiFeS","authors":"Daegeon Choi,&nbsp;Sangwoo Ryu","doi":"10.1007/s13391-023-00476-7","DOIUrl":"10.1007/s13391-023-00476-7","url":null,"abstract":"<div><p>For the heterogeneous alloy catalysts of water electrolysis, it has been reported that conductivity can be improved through structural modifications by introducing other elements like chalcogens. Transition metal sulfides can induce numerous lattice defects due to their unique interface formation, thereby promoting abundant active sites and facilitating electron/ion movement. In this study, we report the enhanced electrochemical activity of NiFeS formed on nickel foam (NiFeS@NF) for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) during the water electrolysis, especially, the seawater electrolysis. NiFeS@NF synthesized through a one-step electrochemical deposition had an amorphous-like highly porous structure with the aggregates of spherical nanoparticles attached to nickel foam. Compared to NiFe@NF, NiFeS@NF catalysts demonstrated a reduced overpotential by ~32 mV and ~96 mV for OER and HER, respectively, at 100 mA cm<sup>−2</sup> and secured electrochemical stability over 24 h. Moreover, bifunctional seawater electrolysis using NiFeS@NF as both electrodes demonstrated the reduced overpotential by ~80 mV with durability over time. This facile synthesis method for anion doping and  the enhanced and selective electrolysis of seawater without producing Cl<sub>2</sub> gas holds promise for the creation of high-performance electrocatalysts applicable in a wide range of hydrogen energy-related fields.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 2","pages":"173 - 182"},"PeriodicalIF":2.1,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138743322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Stepped Mesh Host for Lithium Metal Batteries Inspired by Transmission Electron Microscopy Sampling Grids 受透射电子显微镜取样网格启发的锂金属电池阶梯式网格主机
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2023-12-16 DOI: 10.1007/s13391-023-00474-9
Jeongmin Kim, Mihyun Kim, Minki Kim, Jinseok Hong, Seung Won Moon, Seung-Ho Yu, Seung-Yong Lee
{"title":"A Stepped Mesh Host for Lithium Metal Batteries Inspired by Transmission Electron Microscopy Sampling Grids","authors":"Jeongmin Kim,&nbsp;Mihyun Kim,&nbsp;Minki Kim,&nbsp;Jinseok Hong,&nbsp;Seung Won Moon,&nbsp;Seung-Ho Yu,&nbsp;Seung-Yong Lee","doi":"10.1007/s13391-023-00474-9","DOIUrl":"10.1007/s13391-023-00474-9","url":null,"abstract":"<div><p>With the growing demand for high-energy-density rechargeable batteries, lithium metal anodes have reemerged as a promising alternative to conventional graphite anodes in lithium-ion batteries. Lithium metal boasts exceptional energy storage characteristics, yet its practical application has been impeded by dendritic growth issues. Extensive research has explored various solutions, including electrode engineering through surface modification and 3D structural hosts, which often involve intricate designs and processes. This study introduces an effective approach to govern lithium metal nucleation and growth, leveraging the synergistic effects of a lithiophilic layer and surface energy diversification. Inspired by the structure of standard copper mesh grids used in transmission electron microscopy (TEM), we illustrate how subtle topographic modifications can provide a viable path to anode-free lithium metal batteries. This research represents a significant stride towards accelerated advancements in lithium metal batteries, promising higher energy density and enhanced safety for energy storage solutions.</p></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 6","pages":"767 - 774"},"PeriodicalIF":2.1,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138687371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The In-Situ TEM Isothermal Aging Evolution in a µ-Cu/NiAu/Sn/Cu Solder Joint for Full Intermetallic Compounds Interconnects of Flexible Electronics 用于柔性电子全金属间化合物互连的 µ-Cu/NiAu/Sn/Cu 焊点的原位 TEM 等温老化演化
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2023-12-12 DOI: 10.1007/s13391-023-00475-8
Jinhong Liu, Xinyi Jing, Jieshi Chen, Kyung-Wook Paik, Peng He, Shuye Zhang
{"title":"The In-Situ TEM Isothermal Aging Evolution in a µ-Cu/NiAu/Sn/Cu Solder Joint for Full Intermetallic Compounds Interconnects of Flexible Electronics","authors":"Jinhong Liu,&nbsp;Xinyi Jing,&nbsp;Jieshi Chen,&nbsp;Kyung-Wook Paik,&nbsp;Peng He,&nbsp;Shuye Zhang","doi":"10.1007/s13391-023-00475-8","DOIUrl":"10.1007/s13391-023-00475-8","url":null,"abstract":"<div><p>A structure composed of various Cu–Ni–Sn IMCs would develop from severe Joule heat and excessive elemental diffusion under high-density current in the solder joints of flexible printed circuit (FPC). Herein, we firstly observed the evolution of a Cu<sub>6</sub>Sn<sub>5</sub> + Cu<sub>3</sub>Sn/(Ni,Cu)<sub>3</sub>Sn<sub>4</sub> hybrid structure in a µ-Cu/NiAu/Sn/Cu solder joint for full intermetallic compounds (IMCs) interconnect of flexible electronics under isothermal aging condition by in-situ TEM. The joint was divided into two regions, the IMC type on the right region remained unchanged with dwell time prolonging, while the ratio of Cu<sub>3</sub>Sn on the left region at various dwell times fitted the JMAK model when the kinetic parameter n picked 1.5, indicating that grain boundary diffusion was the predominant mechanism for transporting Cu atoms. The nucleation and growth of Cu<sub>3</sub>Sn grains were finished in the Cu<sub>6</sub>Sn<sub>5</sub> layer. The nucleation of a Cu<sub>3</sub>Sn grain with a spherical cap shape was firstly captured by HRTEM, and Cu<sub>3</sub>Sn grains underwent a transformation from columnar to equiaxed when the dwell time was increased, making the morphology of Cu<sub>3</sub>Sn grains in a µ-Cu/NiAu/Sn/Cu solder joint significantly different from the situation in larger solder joints. This study is expected to provide an in-depth study of the microstructural evolution of micro Cu/NiAu/Sn/Cu solder joints under aging condition and thereby expand their application in the microelectronic industry.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 3","pages":"352 - 361"},"PeriodicalIF":2.1,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138628639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
4H to 3C Polytypic Transformation in Al+ Implanted SiC During High Temperature Annealing Al+注入SiC高温退火过程中4H到3C多型转变
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2023-12-02 DOI: 10.1007/s13391-023-00473-w
L. Kuebler, E. Hershkovitz, D. Kouzminov, H.-J. Gossmann, S. Charnvanichborikarn, C. Hatem, H. Kim, K. S. Jones
{"title":"4H to 3C Polytypic Transformation in Al+ Implanted SiC During High Temperature Annealing","authors":"L. Kuebler,&nbsp;E. Hershkovitz,&nbsp;D. Kouzminov,&nbsp;H.-J. Gossmann,&nbsp;S. Charnvanichborikarn,&nbsp;C. Hatem,&nbsp;H. Kim,&nbsp;K. S. Jones","doi":"10.1007/s13391-023-00473-w","DOIUrl":"10.1007/s13391-023-00473-w","url":null,"abstract":"<div><p>Polytypism in SiC has created interest and opportunity for device heterostructures and bandgap engineering in power electronic applications. As each SiC polytype possesses a different bandgap, electron mobility, and degree of anisotropy, unique interfaces can be created without changing its chemical composition. The 4H polytype is commonly used, but the 3C polytype offers high surface electron mobility with isotropic properties as the only cubic polytype. This has driven research on heteroepitaxy with limited success in traditional chemical vapor deposition chambers. Discussion on polytype control and stability has been restricted to bulk and epitaxial crystal growth, despite numerous reports of polytypic transformations occurring during other processing steps. This study revealed the polytypic transformation of 4H-SiC to 3C-SiC after high temperature annealing using high resolution cross-sectional transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). Above 1750 °C, the surface significantly roughened under a reduced pressure of Ar, whereas surface planarity was maintained under Ar atmospheric pressure. The formation of 3C-SiC islands occurred adjacent to large surface pits through an epitaxial growth process for the reduced pressure condition only. Loss of SiC stoichiometry at the surface with Si enrichment and availability of on-axis terraces enabled 3C nucleation. 3C-SiC growth was retarded using a protective carbon cap (C-cap) where defect-free single crystal 3C-SiC has a coherent interface with the 4H-SiC substrate underneath. These findings demonstrate that the 3C polytype can be stable at high temperatures, encouraging the need for a better understanding of polytype stability and control.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 3","pages":"345 - 351"},"PeriodicalIF":2.1,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138506846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Manipulation of Hole and Exciton Distributions in Organic Light-Emitting Diodes with Dual Emission Layers 更正:操纵双发射层有机发光二极管中的空穴和激子分布
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2023-11-30 DOI: 10.1007/s13391-023-00471-y
Suk-Ho Song, Jae-In Yoo, Hyo-Bin Kim, Sung-Cheon Kang, Kanghoon Kim, Sung-Jae Park, Qun Yan, Jang-Kun Song
{"title":"Correction to: Manipulation of Hole and Exciton Distributions in Organic Light-Emitting Diodes with Dual Emission Layers","authors":"Suk-Ho Song,&nbsp;Jae-In Yoo,&nbsp;Hyo-Bin Kim,&nbsp;Sung-Cheon Kang,&nbsp;Kanghoon Kim,&nbsp;Sung-Jae Park,&nbsp;Qun Yan,&nbsp;Jang-Kun Song","doi":"10.1007/s13391-023-00471-y","DOIUrl":"10.1007/s13391-023-00471-y","url":null,"abstract":"","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 3","pages":"243 - 243"},"PeriodicalIF":2.1,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139200781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信