Adaptable Low-Temperature Resistor Standard Composed of ITO thin Film

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sebastian Złotnik, Małgorzata Nyga, Przemysław Morawiak, Witold Rzodkiewicz, Patryk Bruszewski, Marek A. Kojdecki, Jerzy Wróbel, Jarosław Wróbel
{"title":"Adaptable Low-Temperature Resistor Standard Composed of ITO thin Film","authors":"Sebastian Złotnik,&nbsp;Małgorzata Nyga,&nbsp;Przemysław Morawiak,&nbsp;Witold Rzodkiewicz,&nbsp;Patryk Bruszewski,&nbsp;Marek A. Kojdecki,&nbsp;Jerzy Wróbel,&nbsp;Jarosław Wróbel","doi":"10.1007/s13391-025-00548-w","DOIUrl":null,"url":null,"abstract":"<div><p>Herein, we present indium tin oxide (ITO) as a promising candidate for developing adaptable standard resistors. The ITO thin-film device structures exhibit an average resistivity of approx. 1.5 × 10<sup>–4</sup> Ω ⋅ cm, demonstrating remarkable stability in resistance values over time and showcasing temperature-independent magnetoresistance, making them reliable for various applications. ITO resistor structures were found to be optimal with an area ≥10<sup>–7</sup> cm<sup>2</sup>, without observed additional series resistance. The temperature dependence of resistance values changes by approx. 10% within a broad temperature range of 5–310 K in a predictable and repeatable way. Unlike traditional 2D materials, ITO can be processed without the necessity of a protective layer, facilitating easier integration into electronic circuits. Moreover, ITO demonstrates single-type electron characteristics, without hole-like contributions, being particularly suitable as a charge carrier transport control. Our experimental findings indicate that resistors made of ITO-coated glass thin films present a viable alternative to standard chip-type passive components, which are commonly used in electronic devices. This work highlights the potential of ITO as a durable and flexible material for advanced electronics, enabling the design of next-generation resistive elements that can adapt to varying operational conditions.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"21 2","pages":"193 - 199"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13391-025-00548-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-025-00548-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, we present indium tin oxide (ITO) as a promising candidate for developing adaptable standard resistors. The ITO thin-film device structures exhibit an average resistivity of approx. 1.5 × 10–4 Ω ⋅ cm, demonstrating remarkable stability in resistance values over time and showcasing temperature-independent magnetoresistance, making them reliable for various applications. ITO resistor structures were found to be optimal with an area ≥10–7 cm2, without observed additional series resistance. The temperature dependence of resistance values changes by approx. 10% within a broad temperature range of 5–310 K in a predictable and repeatable way. Unlike traditional 2D materials, ITO can be processed without the necessity of a protective layer, facilitating easier integration into electronic circuits. Moreover, ITO demonstrates single-type electron characteristics, without hole-like contributions, being particularly suitable as a charge carrier transport control. Our experimental findings indicate that resistors made of ITO-coated glass thin films present a viable alternative to standard chip-type passive components, which are commonly used in electronic devices. This work highlights the potential of ITO as a durable and flexible material for advanced electronics, enabling the design of next-generation resistive elements that can adapt to varying operational conditions.

Graphical Abstract

可适应低温电阻标准由ITO薄膜组成
在此,我们提出氧化铟锡(ITO)作为开发自适应标准电阻器的有希望的候选人。ITO薄膜器件结构的平均电阻率约为。1.5 × 10-4 Ω⋅cm,随着时间的推移,其电阻值具有显著的稳定性,并且具有与温度无关的磁电阻,可用于各种应用。ITO电阻器结构在面积≥10-7 cm2时最优,没有观察到额外的串联电阻。电阻值的温度依赖性变化约为。以可预测和可重复的方式在5-310 K的宽温度范围内测量10%。与传统的2D材料不同,ITO可以在不需要保护层的情况下进行加工,从而更容易集成到电子电路中。此外,ITO表现出单型电子特性,没有空穴样贡献,特别适合作为电荷载流子输运控制。我们的实验结果表明,ito涂层玻璃薄膜制成的电阻器是标准芯片型无源元件的可行替代方案,通常用于电子设备。这项工作突出了ITO作为先进电子产品耐用和柔性材料的潜力,使设计能够适应不同操作条件的下一代电阻元件成为可能。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Materials Letters
Electronic Materials Letters 工程技术-材料科学:综合
CiteScore
4.70
自引率
20.80%
发文量
52
审稿时长
2.3 months
期刊介绍: Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信