用于水可降解短期晶体管存储器的羟乙基纤维素电荷阱层

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jeong-In Lee, Baeksang Sung, Joo Won Han, Yong Hyun Kim, Jonghee Lee, Min-Hoi Kim
{"title":"用于水可降解短期晶体管存储器的羟乙基纤维素电荷阱层","authors":"Jeong-In Lee,&nbsp;Baeksang Sung,&nbsp;Joo Won Han,&nbsp;Yong Hyun Kim,&nbsp;Jonghee Lee,&nbsp;Min-Hoi Kim","doi":"10.1007/s13391-025-00553-z","DOIUrl":null,"url":null,"abstract":"<div><p>This study demonstrates the performance of a hydroxyethyl cellulose (HEC) charge trap layer for p-type organic thin-film transistor memory. The HEC charge trap transistor memory (HEC-TM) shows conventional charge trapping characteristics; that is, positive and negative threshold voltage (<i>V</i><sub>th</sub>) shifts after the application of a positive and negative bias, respectively. As the time and amplitude of the gate bias increases, <i>V</i><sub>th</sub> shift increases gradually and saturates. Because the electron trap is relatively more dominant than the hole trap in the hydroxyl group of HEC, a larger shift in <i>V</i><sub>th</sub> and longer memory retention appears when a positive voltage is applied rather than a negative voltage. HEC-TM is immersed and the HEC charge trap layer (HEC-CTL) is dissolved sufficiently with deionized water to validate its water degradability. HEC-TM is expected to be utilized as a biodegradable short-term transistor memory device.</p><h3>Graphic Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"21 3","pages":"357 - 365"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydroxyethyl Cellulose Charge Trap Layer for Water-Degradable Short-Term Transistor Memory\",\"authors\":\"Jeong-In Lee,&nbsp;Baeksang Sung,&nbsp;Joo Won Han,&nbsp;Yong Hyun Kim,&nbsp;Jonghee Lee,&nbsp;Min-Hoi Kim\",\"doi\":\"10.1007/s13391-025-00553-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study demonstrates the performance of a hydroxyethyl cellulose (HEC) charge trap layer for p-type organic thin-film transistor memory. The HEC charge trap transistor memory (HEC-TM) shows conventional charge trapping characteristics; that is, positive and negative threshold voltage (<i>V</i><sub>th</sub>) shifts after the application of a positive and negative bias, respectively. As the time and amplitude of the gate bias increases, <i>V</i><sub>th</sub> shift increases gradually and saturates. Because the electron trap is relatively more dominant than the hole trap in the hydroxyl group of HEC, a larger shift in <i>V</i><sub>th</sub> and longer memory retention appears when a positive voltage is applied rather than a negative voltage. HEC-TM is immersed and the HEC charge trap layer (HEC-CTL) is dissolved sufficiently with deionized water to validate its water degradability. HEC-TM is expected to be utilized as a biodegradable short-term transistor memory device.</p><h3>Graphic Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":536,\"journal\":{\"name\":\"Electronic Materials Letters\",\"volume\":\"21 3\",\"pages\":\"357 - 365\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13391-025-00553-z\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-025-00553-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究展示了用于p型有机薄膜晶体管存储器的羟乙基纤维素(HEC)电荷阱层的性能。HEC电荷阱晶体管存储器(HEC- tm)具有传统的电荷阱特性;即施加正偏置和负偏置后,正负阈值电压(Vth)分别移位。随着栅极偏置时间和幅度的增加,Vth位移逐渐增大并趋于饱和。由于HEC羟基上的电子陷阱相对于空穴陷阱更占优势,所以当施加正电压而不是负电压时,Vth的位移更大,记忆保持时间更长。将HEC- tm浸没,HEC电荷阱层(HEC- ctl)与去离子水充分溶解,验证其水降解性。HEC-TM有望用作生物可降解的短期晶体管存储器件。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydroxyethyl Cellulose Charge Trap Layer for Water-Degradable Short-Term Transistor Memory

This study demonstrates the performance of a hydroxyethyl cellulose (HEC) charge trap layer for p-type organic thin-film transistor memory. The HEC charge trap transistor memory (HEC-TM) shows conventional charge trapping characteristics; that is, positive and negative threshold voltage (Vth) shifts after the application of a positive and negative bias, respectively. As the time and amplitude of the gate bias increases, Vth shift increases gradually and saturates. Because the electron trap is relatively more dominant than the hole trap in the hydroxyl group of HEC, a larger shift in Vth and longer memory retention appears when a positive voltage is applied rather than a negative voltage. HEC-TM is immersed and the HEC charge trap layer (HEC-CTL) is dissolved sufficiently with deionized water to validate its water degradability. HEC-TM is expected to be utilized as a biodegradable short-term transistor memory device.

Graphic Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Materials Letters
Electronic Materials Letters 工程技术-材料科学:综合
CiteScore
4.70
自引率
20.80%
发文量
52
审稿时长
2.3 months
期刊介绍: Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信