Electronic Materials Letters最新文献

筛选
英文 中文
Phase Formation Behavior and Thermoelectric Transport Properties of Solid Solution Composition Between SnTe and InTe
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2024-11-16 DOI: 10.1007/s13391-024-00529-5
BeomSoo Kim, TaeWan Kim, Seungchan Seon, Okmin Park, Hyungyu Cho, Weon Ho Shin, Sang-il Kim
{"title":"Phase Formation Behavior and Thermoelectric Transport Properties of Solid Solution Composition Between SnTe and InTe","authors":"BeomSoo Kim,&nbsp;TaeWan Kim,&nbsp;Seungchan Seon,&nbsp;Okmin Park,&nbsp;Hyungyu Cho,&nbsp;Weon Ho Shin,&nbsp;Sang-il Kim","doi":"10.1007/s13391-024-00529-5","DOIUrl":"10.1007/s13391-024-00529-5","url":null,"abstract":"<div><p>Alloys based on SnTe have been widely studied for their eco-friendly characteristics and good electrical performance in the high-temperature range above 600 K. In this study, SnTe-InTe solid solution alloy compositions of Sn<sub>1 − x</sub>In<sub>x</sub>Te (<i>x</i> = 0, 0.2, 0.4, 0.6, 0.8, and 1.0) were investigated for their phase formation behavior and thermoelectric properties. A single cubic SnTe phase was formed in <i>x</i> ≤ 0.4 samples, while <i>x</i> = 0.6 and 0.8 samples formed multi-phase with a tetragonal InTe phase. The carrier mobility gradually decreased with increasing <i>x</i> in the single cubic phase region (<i>x</i> = 0-0.4), and a drastic reduction of 58% for <i>x</i> = 0.2 and 82% for <i>x</i> = 0.4, causing <i>S</i> and <i>σ</i> to decrease simultaneously compared to that of the pristine SnTe. Thus, the power factor gradually reduced to 0.06 mW/mK<sup>2</sup> for <i>x</i> = 0.4 compared to 1.57 mW/mK<sup>2</sup> for the pristine sample, as confirmed by the weighted mobility reduction behavior. The lattice thermal conductivity showed a gradual decrease in the simple cubic phase region, owing to the additional point defects formed by In substitution of Sn sites. Consequently, <i>zT</i> gradually decreased from 0.31 for the pristine to 0.02 for <i>x</i> = 0.4 sample due to the degradation of carrier transport properties, specifically Hall mobility, outweighing the total thermal conductivity reduction. The maximum <i>zT</i> value of 0.50 at 750 K was observed for InTe (<i>x</i> = 1.0). Additional analysis using the single-parabolic-band model indicated that <i>zT</i> enhancement through carrier concentration optimization was not feasible for the alloy samples.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"21 2","pages":"207 - 215"},"PeriodicalIF":2.1,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143571153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase-Separated 2D PbBiI5 Halide Memristor for Neuromorphic Computing 用于神经形态计算的2D相分离PbBiI5卤化物记忆电阻器
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2024-11-08 DOI: 10.1007/s13391-024-00528-6
Hee Joon Jung
{"title":"Phase-Separated 2D PbBiI5 Halide Memristor for Neuromorphic Computing","authors":"Hee Joon Jung","doi":"10.1007/s13391-024-00528-6","DOIUrl":"10.1007/s13391-024-00528-6","url":null,"abstract":"<div><p>Here, we report on the two-dimensional (2D) (PbI<sub>2</sub>)<sub>0.5</sub>(BiI<sub>3</sub>)<sub>0.5</sub> mixed halide memristor, which exhibits nonlinear conductance that surpasses the properties of the simple combination of PbI<sub>2</sub> and BiI<sub>3</sub> binaries. This 2D system is phase-separated into Bi-rich and Bi-poor nanoscale domains rather than forming a single homogeneous phase. Phase boundaries, predominantly featuring iodine vacancies or stacking faults, induce a novel memristive behavior along the c-axis, driven by ion transport perpendicular to the layered structure, making it promising for resistive switching memory (RRAM) applications. In-situ biasing transmission electron microscopy (TEM) reveals the formation of iodine filaments under sweep bias, with ion migration occurring mainly through phase boundaries in the out-of-plane direction. Direct observation of reversible filament formation in this phase-separated iodide system provides new insights into defect-mediated ion migration, resulting in nonlinear resistive switching, with potential applications in neuromorphic computing. The ability to track heavy anions like iodine in the halide memristor provides valuable insights into the similar correlation mechanisms between ion migration and defects in oxide or sulfide-based memristors. This capability could shed light on how defects influence ion transport in a broader range of materials, enhancing the development of resistive switching devices.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"21 1","pages":"32 - 40"},"PeriodicalIF":2.1,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Thermoelectric Properties of FeSe2 Alloys by Lattice Thermal Conductivity Reduction by Cl Doping Cl掺杂降低FeSe2合金晶格热导率增强其热电性能
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2024-11-07 DOI: 10.1007/s13391-024-00527-7
BeomSoo Kim, Hyungyu Cho, Okmin Park, Seungchan Seon, Sang-il Kim
{"title":"Enhanced Thermoelectric Properties of FeSe2 Alloys by Lattice Thermal Conductivity Reduction by Cl Doping","authors":"BeomSoo Kim,&nbsp;Hyungyu Cho,&nbsp;Okmin Park,&nbsp;Seungchan Seon,&nbsp;Sang-il Kim","doi":"10.1007/s13391-024-00527-7","DOIUrl":"10.1007/s13391-024-00527-7","url":null,"abstract":"<div><p>Metal chalcogenides are widely studied as thermoelectric materials due to their finely tunable electronic transport properties over a wide temperature range. FeSe<sub>2</sub> has recently been considered a promising thermoelectric material with investigations focusing on restraining bipolar behavior through doping. In this study, a series of Cl-doped FeSe<sub>2</sub> compositions, a series of FeSe<sub>2 − x</sub>Cl<sub>x</sub> (<i>x</i> = 0, 0.01, 0.025, and 0.05) compositions, were synthesized to investigate the influence of Cl doping. While the gradually decreasing lattice parameters with doping content <i>x</i> suggests successful doping up to <i>x</i> = 0.05, the hole concentration slightly decreased owing to electrons generated by the Cl doping. Nevertheless, the electrical conductivity and Seebeck coefficient show no systematic change with <i>x</i> owing to very low electron generating efficiency, and no distinctive enhancement of power factor is seen for the doped samples. On the other hand, the lattice thermal conductivity gradually and significantly decreased with <i>x</i> from 9.2 W/mK to 6.3 W/mK for <i>x</i> = 0.05 by 32% at 300 K, which is originated from the effective additional phonon scattering due to the difference in mass (55%) and size (9%) between Se<sup>2−</sup> and Cl<sup>−</sup> ions. Consequently, a thermoelectric figure of merit is increased to 0.073 from 0.057 at 600 K for <i>x</i> = 0.05.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"21 1","pages":"79 - 86"},"PeriodicalIF":2.1,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid Thermal Annealing under O2 Ambient to Recover the Deterioration by Gamma-Ray Irradiation in a-IGZO TFTs O2环境下快速热退火恢复γ射线辐照下a-IGZO tft的劣化
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2024-10-15 DOI: 10.1007/s13391-024-00526-8
Minah Park, Jaewook Yoo, Hongseung Lee, Hyeonjun Song, Soyeon Kim, Seongbin Lim, Seohyeon Park, Jo Hak Jeong, Bongjoong Kim, Kiyoung Lee, Yoon Kyeung Lee, Keun Heo, Jiseok Kwon, Hagyoul Bae
{"title":"Rapid Thermal Annealing under O2 Ambient to Recover the Deterioration by Gamma-Ray Irradiation in a-IGZO TFTs","authors":"Minah Park,&nbsp;Jaewook Yoo,&nbsp;Hongseung Lee,&nbsp;Hyeonjun Song,&nbsp;Soyeon Kim,&nbsp;Seongbin Lim,&nbsp;Seohyeon Park,&nbsp;Jo Hak Jeong,&nbsp;Bongjoong Kim,&nbsp;Kiyoung Lee,&nbsp;Yoon Kyeung Lee,&nbsp;Keun Heo,&nbsp;Jiseok Kwon,&nbsp;Hagyoul Bae","doi":"10.1007/s13391-024-00526-8","DOIUrl":"10.1007/s13391-024-00526-8","url":null,"abstract":"<div><p>Amorphous indium-gallium-zinc-oxide (a-IGZO) has been attracting great attention as a channel material for dynamic random access memory (DRAM) cell transistors due to its superior characteristics including low leakage current, large area deposition, and back-end-of-line (BEOL) compatibility. It should be clearly taken into account that DRAM will also be used in harsh environments such as military surveillance, aerospace, and nuclear power plants. Especially, these situations can cause inevitable and persistent degradation in long-term operations. When the a-IGZO thin film transistors (TFTs) were irradiated by gamma-ray with total doses of 500 Gy, threshold voltage (<i>V</i><sub>T</sub>) was negatively shifted and hysteresis (delta of <i>V</i><sub>T</sub> between forward and backward sweeps) was increased by creating a positive charge in gate insulator. The extracted density-of-states (DOS) and fitted model were employed to investigate the behavior of oxygen vacancy (<i>V</i><sub>O</sub>) in a-IGZO thin film. Electrical performance degraded by gamma-ray irradiation such as changes in <i>V</i><sub>T</sub>, border trap, tail acceptor-like states (<i>g</i><sub>TA</sub>(<i>E</i>)), and shallow donor-like states (<i>g</i><sub>SD</sub>(<i>E</i>)) were recovered through rapid thermal annealing (RTA) under the O<sub>2</sub> ambient.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"21 1","pages":"111 - 118"},"PeriodicalIF":2.1,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of Core/Shell WO3/WS2 Heterostructure Nanowires with Negative Photo-Responsiveness 负光响应性WO3/WS2核壳异质结构纳米线的合成
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2024-10-10 DOI: 10.1007/s13391-024-00524-w
Yu-Jin Song, Changhyeon Yoo, Camellia Schwartzman, Han-Kyun Shin, Hyoung J. Cho, Yeonwoong Jung, Jung Han Kim
{"title":"Synthesis of Core/Shell WO3/WS2 Heterostructure Nanowires with Negative Photo-Responsiveness","authors":"Yu-Jin Song,&nbsp;Changhyeon Yoo,&nbsp;Camellia Schwartzman,&nbsp;Han-Kyun Shin,&nbsp;Hyoung J. Cho,&nbsp;Yeonwoong Jung,&nbsp;Jung Han Kim","doi":"10.1007/s13391-024-00524-w","DOIUrl":"10.1007/s13391-024-00524-w","url":null,"abstract":"<div><p>WO<sub>3</sub>/WS<sub>2</sub> core/shell nanowires were synthesized using a scalable fabrication method by combining wet chemical etching and chemical vapor deposition (CVD). Initially, WO<sub>3</sub> nanowires were formed through wet chemical etching using a potassium hydroxide (KOH) solution, followed by oxidation at 650 °C. These WO<sub>3</sub> nanowires were then sulfurized at 900 °C to form a WS<sub>2</sub> shell, resulting in WO<sub>3</sub>/WS<sub>2</sub> core/shell nanowires with diameters ranging from 90 to 370 nm. The synthesized nanowires were characterized using scanning electron microscopy (SEM), Raman, energy-dispersive X-ray spectroscopy (EDS), X-ray diffractometry (XRD), and transmission electron microscopy (TEM). The shell is composed of 2D WS<sub>2</sub> layers with uniformly spaced 2D layers as well as the atomically sharp core/shell interface of WO<sub>3</sub>/WS<sub>2</sub>. Notably, the WO<sub>3</sub>/WS<sub>2</sub> heterostructure nanowires exhibited a unique negative photoresponse under visible light (405 nm) illumination. This negative photoresponse highlights the importance of interface engineering in these heterostructures and demonstrates the potential of WO<sub>3</sub>/WS<sub>2</sub> core/shell nanowires for applications in photodetectors and other optoelectronic devices.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"21 1","pages":"87 - 93"},"PeriodicalIF":2.1,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of Diffusion Barrier Properties of Ni–Fe and Ni–Fe–W Layer at the Cu/Sn Interface Cu/Sn界面Ni-Fe和Ni-Fe - w层扩散势垒性能比较
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2024-10-03 DOI: 10.1007/s13391-024-00525-9
Jinyang Liu, Chongyang Li, Yuexiao Liu, Anmin Hu, Ming Li
{"title":"Comparison of Diffusion Barrier Properties of Ni–Fe and Ni–Fe–W Layer at the Cu/Sn Interface","authors":"Jinyang Liu,&nbsp;Chongyang Li,&nbsp;Yuexiao Liu,&nbsp;Anmin Hu,&nbsp;Ming Li","doi":"10.1007/s13391-024-00525-9","DOIUrl":"10.1007/s13391-024-00525-9","url":null,"abstract":"<div><p>Bump is a pivotal technology in 3D IC. However, with the reduction in bump size, there is an urgent need for a high-performance barrier layer material to retard the growth of intermetallic compounds (IMCs) at the interface. The study investigated the diffusion barrier properties and mechanical properties of electrodeposited Ni, Ni–15Fe, Ni–44Fe, Ni–42Fe–16W, and Ni–41Fe–28W. Ni–41Fe–28W demonstrated superior barrier properties, with a thickness of 0.42 μm after aging at 150 °C for 720 h. During the early stages of aging, FeSn<sub>2</sub> were formed at the interface, followed by the later generation of blocky Ni<sub>3</sub>Sn<sub>4</sub>. With a rise in Fe content, the nucleation of Ni<sub>3</sub>Sn<sub>4</sub> was suppressed and the wettability and shear strength of the interface were also enhanced. As for Cu/Ni–Fe–W/Sn, a thin layer of FeSn<sub>2</sub> was also formed, and a whitish Ni–Fe–W–Sn layer was developed at the interface. After aging for 720 h, no significant Ni–Sn IMCs were observed. As W content increased, FeSn<sub>2</sub> converted from layered type to island type. The introduction of W significantly inhibited the diffusion of IMCs nucleation at the interface, endowing Ni–Fe–W with excellent barrier properties. Although W reduced the interface wettability, it enhanced shear strength at lower concentrations, with SAC305/Ni–42Fe–16W achieving the highest strength of 34.8 MPa. While as W content increased, the fracture mode shifted from ductile fracture within the solder to mixed ductile–brittle fracture, leading to decrease in interface reliability. This study provided valuable insights for the design of high-performance barrier layers in advanced packaging.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"21 1","pages":"22 - 31"},"PeriodicalIF":2.1,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermoelectric Characteristics of Bulk Cr2Te3 with Low Lattice Thermal Conductivity 低点阵热导率大块Cr2Te3的热电特性
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2024-09-25 DOI: 10.1007/s13391-024-00523-x
Donghyun Shin, Hyunji Kim, Joseph Ngugi Kahiu, Samuel Kimani Kihoi, Ho Seong Lee
{"title":"Thermoelectric Characteristics of Bulk Cr2Te3 with Low Lattice Thermal Conductivity","authors":"Donghyun Shin,&nbsp;Hyunji Kim,&nbsp;Joseph Ngugi Kahiu,&nbsp;Samuel Kimani Kihoi,&nbsp;Ho Seong Lee","doi":"10.1007/s13391-024-00523-x","DOIUrl":"10.1007/s13391-024-00523-x","url":null,"abstract":"<div><p>In this study, we aimed to synthesize bulk Cr<sub>2</sub>Te<sub>3</sub> and evaluate its thermoelectric properties. Previously, Cr<sub>2</sub>Te<sub>3</sub> with a layered structure has primarily been synthesized in thin film form for studies that focused on its magnetic properties. The intrinsic layered structure of Cr₂Te₃ can contributes to its low lattice thermal conductivity. Our experimental results confirmed the successful synthesis of a homogeneous single-phase specimen and revealed a significantly low lattice thermal conductivity of 0.31 W/mK at 673 K. Additionally, we explored the substitution of titanium and germanium at chromium sites as a method to enhance thermoelectric performance, achieving a notable increase in the power factor.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"21 1","pages":"70 - 78"},"PeriodicalIF":2.1,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-Functional Molybdenum Oxide Doping to Improve the Electrical Characteristics of Indium Oxide Thin Film Transistors 多功能氧化钼掺杂改善氧化铟薄膜晶体管电特性
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2024-09-24 DOI: 10.1007/s13391-024-00522-y
Kwan-Jun Heo, Jae-Yun Lee, Gergely Tarsoly, Sung-Jin Kim
{"title":"Multi-Functional Molybdenum Oxide Doping to Improve the Electrical Characteristics of Indium Oxide Thin Film Transistors","authors":"Kwan-Jun Heo,&nbsp;Jae-Yun Lee,&nbsp;Gergely Tarsoly,&nbsp;Sung-Jin Kim","doi":"10.1007/s13391-024-00522-y","DOIUrl":"10.1007/s13391-024-00522-y","url":null,"abstract":"<div><p>This study investigates the utilization of MoO<sub>3</sub> precursors to enhance the electrical properties and stability of In<sub>2</sub>O<sub>3</sub> TFTs based on eco-friendly aqueous solutions. Specifically, MoO<sub>3</sub> doped In<sub>2</sub>O<sub>3</sub> (Mo-In<sub>2</sub>O<sub>3</sub>) TFTs were examined in this research. The Mo cation, hydroxide anion, and oxide radical of the MoO<sub>3</sub> precursor provide free electrons to the In<sub>2</sub>O<sub>3</sub> thin film, reducing the trap site between the semiconductor interface, the semiconductor and the insulator, and improving the stability of the device by adjusting the oxygen vacancy. To verify the change in the electrical properties of In<sub>2</sub>O<sub>3</sub> TFT due to MoO<sub>3</sub> doping, measurements of electron mobility after 30 days confirmed that In<sub>2</sub>O<sub>3</sub> TFT electron mobility decreased by more than 80%, whereas Mo-In<sub>2</sub>O<sub>3</sub> TFT electron mobility remained stable. PBS and NBS reliability evaluations confirmed that the Vth change of Mo- In<sub>2</sub>O<sub>3</sub> TFT was less than that of In<sub>2</sub>O<sub>3</sub> TFT. (In<sub>2</sub>O<sub>3</sub> TFT PBS: 5.55 V, NBS: 0.33 V, Mo-In<sub>2</sub>O<sub>3</sub> TFT PBS: 4.04 V, NBS: 0.10 V). In order to confirm the interface change of In<sub>2</sub>O<sub>3</sub> film according to MoO<sub>3</sub> Doping, the difference in surface roughness was measured using an AFM and found to be within 4%. In addition, the doping effect of the active layer was verified through changes in oxygen species in XPS analysis. To demonstrate its application as an active electronic device, a Mo-In<sub>2</sub>O<sub>3</sub> TFT based resistance load inverter was evaluated, and the voltage transfer curve and excellent inversion characteristics of the inverter were confirmed under various <i>V</i><sub><i>DD</i></sub> conditions.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div><div><p>Kwan-Jun Heo et al., multi-functional molybdenum oxide doping to improve the electrical characteristics of indium oxide thin film transistors</p></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"21 1","pages":"9 - 21"},"PeriodicalIF":2.1,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Crystal Domain on Electrical Performance and Bending Durability of Flexible Organic Thin-Film Transistors with diF-TES-ADT Semiconductor 晶域对采用 diF-TES-ADT 半导体的柔性有机薄膜晶体管电气性能和弯曲耐久性的影响
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2024-09-15 DOI: 10.1007/s13391-024-00519-7
Dongwook Kim, Joel Ndikumana, Hyeonju Lee, Seullee Lee, Youngjun Yun, Jaehoon Park
{"title":"Impact of Crystal Domain on Electrical Performance and Bending Durability of Flexible Organic Thin-Film Transistors with diF-TES-ADT Semiconductor","authors":"Dongwook Kim,&nbsp;Joel Ndikumana,&nbsp;Hyeonju Lee,&nbsp;Seullee Lee,&nbsp;Youngjun Yun,&nbsp;Jaehoon Park","doi":"10.1007/s13391-024-00519-7","DOIUrl":"10.1007/s13391-024-00519-7","url":null,"abstract":"<div><p>In this study, we examined the impact of crystal domain on the electrical performance and durability of flexible organic thin-film transistors (OTFTs). To analyze this, we fabricated the OTFTs on a polyimide substrate using 2,8-difluoro-5,11bis(triethylsilylethynyl)anthradithiophene (diF-TES-ADT) as the organic semiconductor. To examine the influence of the film morphology and crystallinity on the electrical characteristics of OTFTs, we dissolved diF-TES-ADT in chlorobenzene and toluene solvent, annealed it at different temperatures, and then evaluated its electrical performances. The optimum annealing temperature of the diF-TES-ADT OTFTs was determined through the comprehensive analysis of the electrical parameters. The film morphology and crystallinity of organic semiconductor as a function of temperature were examined using the technical measurement analysis such as the atomic force measurement, X-ray diffraction and polarized optic microscopy. Furthermore, we demonstrated the electrical degradation of the device under prolonged bending cycles and observed the effect of bending stress on the electrical performance of OTFTs. The size of the crystalline domain and surface morphology indicated a slower deterioration of OTFT performance with an increase in the number of bending cycles. It was approved that the crystal grain size and morphology of organic semiconductor may not be critical factors determining the electrical performance of OTFTs, however, the electrical durability against bending stress was significantly degraded by these factors. We speculate that the smaller grain sizes and directionally-grown crystalline structure are highly vulnerable to bending stress, resulting in increased occurrence of void cracks and structural defects.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"21 1","pages":"1 - 8"},"PeriodicalIF":2.1,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142264597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
All-Cobalt-Free Layered/Olivine Mixed Cathode Material for High-Electrode Density and Enhanced Cycle-Life Performance 全无钴层状/橄榄石混合阴极材料可实现高电极密度和更长的循环寿命性能
IF 2.1 4区 材料科学
Electronic Materials Letters Pub Date : 2024-09-12 DOI: 10.1007/s13391-024-00521-z
Chang-Su Kim, Kookhan Kim, An-Seop Im, Sung-Su Kim, Jongmin Kim, Ji-Yong Eom
{"title":"All-Cobalt-Free Layered/Olivine Mixed Cathode Material for High-Electrode Density and Enhanced Cycle-Life Performance","authors":"Chang-Su Kim,&nbsp;Kookhan Kim,&nbsp;An-Seop Im,&nbsp;Sung-Su Kim,&nbsp;Jongmin Kim,&nbsp;Ji-Yong Eom","doi":"10.1007/s13391-024-00521-z","DOIUrl":"10.1007/s13391-024-00521-z","url":null,"abstract":"<div><p>In this study, a high-energy-density electrode was fabricated by combining cobalt-free layered oxide (NM) with olivine LiFePO<sub>4</sub> (LFP) nanoparticles. The resulting mixed all-cobalt-free cathode electrode effectively minimized electrode porosity by filling the interstitial spaces between the micron-sized layered-oxide particles with nanoscale LFP particles, significantly improving electrode density, and exhibiting excellent electrode conductivity. Furthermore, the composite electrode composed of NM and LFP achieved a volumetric capacity exceeding 600 mAh/cm<sup>− 3</sup>, comparable to that of typical layered oxide cathode materials, while also demonstrating enhanced cycle-life performance relative to electrodes composed solely of layered oxide or LFP. The enhanced electrochemical performance is attributed to the efficient lithium-ion and electron conduction facilitated by the intimate contact between NM and LFP particles, the suppression of NM particle degradation due to the relatively stable LFP particles on the NM surface, and the reduced particle fracture during roll-pressing. These improvements have been confirmed through electrochemical analyses and electrode observations.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 6","pages":"799 - 806"},"PeriodicalIF":2.1,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信