{"title":"Exploring Fe-Doping Effects in K0.5Na0.5NbO3 (KNN) for Enhancing Electrical and Magnetic Properties","authors":"Pooja Dahiya, Ashima Hooda","doi":"10.1007/s13391-025-00564-w","DOIUrl":null,"url":null,"abstract":"<p>K<sub>0.5</sub>Na<sub>0.5</sub>NbO<sub>3</sub>-based ceramics owing to their outstanding properties have compelled the researcher’s attention as an innovative multifunctional material. The structural, dielectric, electrical and magnetic properties of polycrystalline perovskites of K<sub>0.5</sub>Na<sub>0.5</sub>Fe<sub><i>x</i></sub>Nb<sub>1–<i>x</i></sub>O<sub>3</sub> (<i>x</i> = 0.10, 0.15, 0.20) prepared by the conventional solid-state reaction method were investigated systematically. Interestingly, the XRD results revealed the successful formation of pure perovskite orthorhombic crystal structures without any secondary phases. Furthermore, Rietveld refinement analysis indicated a significant variation in the lattice parameters and unit cell volume. The microstructural analysis emphasized unique irregular rectangular grain morphologies with an average size of 0.6–0.9 μm, while EDX spectra affirmed compositional uniformity. Impedance spectroscopy provided a thorough analysis of the contributions from grain and grain boundary effects, elucidating the mechanisms behind the enhanced dielectric constant. The narrowing of the band gap is assessed using diffuse reflectance spectroscopy. The prepared samples can be utilized to improve the performance of materials used in optical data storage devices. The presence of Fe in various oxidation states, including Fe<sup>2+</sup>and Fe<sup>3+</sup> was explored through X-ray photoelectron spectroscopy analysis. The magnetic measurements show that the prepared samples exhibit paramagnetic behavior. This research explores the ultimate functionalities of these samples paving the way for their application in advanced electronic and magnetic technologies.</p>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"21 3","pages":"375 - 394"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-025-00564-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
K0.5Na0.5NbO3-based ceramics owing to their outstanding properties have compelled the researcher’s attention as an innovative multifunctional material. The structural, dielectric, electrical and magnetic properties of polycrystalline perovskites of K0.5Na0.5FexNb1–xO3 (x = 0.10, 0.15, 0.20) prepared by the conventional solid-state reaction method were investigated systematically. Interestingly, the XRD results revealed the successful formation of pure perovskite orthorhombic crystal structures without any secondary phases. Furthermore, Rietveld refinement analysis indicated a significant variation in the lattice parameters and unit cell volume. The microstructural analysis emphasized unique irregular rectangular grain morphologies with an average size of 0.6–0.9 μm, while EDX spectra affirmed compositional uniformity. Impedance spectroscopy provided a thorough analysis of the contributions from grain and grain boundary effects, elucidating the mechanisms behind the enhanced dielectric constant. The narrowing of the band gap is assessed using diffuse reflectance spectroscopy. The prepared samples can be utilized to improve the performance of materials used in optical data storage devices. The presence of Fe in various oxidation states, including Fe2+and Fe3+ was explored through X-ray photoelectron spectroscopy analysis. The magnetic measurements show that the prepared samples exhibit paramagnetic behavior. This research explores the ultimate functionalities of these samples paving the way for their application in advanced electronic and magnetic technologies.
期刊介绍:
Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.