{"title":"Hölder classes in the 𝐿^{𝑝} norm on a chord-arc curve in ℝ³","authors":"T. Alexeeva, N. Shirokov","doi":"10.1090/spmj/1769","DOIUrl":"https://doi.org/10.1090/spmj/1769","url":null,"abstract":"<p>The Hölder classes <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Subscript p Superscript alpha Baseline left-parenthesis upper L right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msubsup>\u0000 <mml:mi>L</mml:mi>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi>α<!-- α --></mml:mi>\u0000 </mml:mrow>\u0000 </mml:msubsup>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>L</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">L_p^{alpha } (L)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> in the <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Subscript p Baseline left-parenthesis upper L right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msub>\u0000 <mml:mi>L</mml:mi>\u0000 <mml:mi>p</mml:mi>\u0000 </mml:msub>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>L</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">L_p(L)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> norm on a <italic>chord-arc</italic> curve <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\">\u0000 <mml:semantics>\u0000 <mml:mi>L</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">L</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> in <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R cubed\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">R</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mn>3</mml:mn>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbb {R}^3</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> are defined and direct and inverse approximation theorems are proved for functions from these classes by functions harmonic in a neighborhood of the curve. The approximation is estimated in the <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript p Baseline left-parenthesis upper L right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msup>\u0000 <mml:mi>L</mml:mi>\u0000 <mml:mi>p</mml:mi>\u0000 </mml:msup>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>L</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">L^p(L)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> norm, the direct theorem is proved for a certain subclass of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Subscript p Superscri","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47050295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Maxwell system in nonhomogeneous anisotropic waveguides with slowly stabilizing characteristics of the filling medium","authors":"B. Plamenevskii, A. Poretskii","doi":"10.1090/spmj/1773","DOIUrl":"https://doi.org/10.1090/spmj/1773","url":null,"abstract":"In a domain having several cylindrical outlets to infinity, the stationary Maxwell system with perfectly conductive boundary conditions is studied. The dielectric permittivity and magnetic permeability are assumed to be arbitrary positive definite matrix-valued functions that slowly stabilize at infinity. The authors introduce the scattering matrix, establish the unique solvability of the problem with radiation conditions at infinity, and describe the asymptotics of solutions.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43624988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"General elementary solution of a 𝑞-sided convolution type homogeneous equation","authors":"Yuriy Saranchuk, A. Shishkin","doi":"10.1090/spmj/1774","DOIUrl":"https://doi.org/10.1090/spmj/1774","url":null,"abstract":"Exponential polynomials satisfying a homogeneous equation of convolution type are called its elementary solutions. The article is devoted to convolution-type operators in the complex domain that generalize the well-known operators of \u0000\u0000 \u0000 q\u0000 q\u0000 \u0000\u0000-sided convolution and \u0000\u0000 \u0000 π\u0000 pi\u0000 \u0000\u0000-convolution. The properties of such operators are investigated and the general form of elementary solutions (general elementary solution) of a homogeneous equation of \u0000\u0000 \u0000 q\u0000 q\u0000 \u0000\u0000-sided convolution type is described.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45564488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the constants in abstract inverse theorems of approximation theory","authors":"O. Vinogradov","doi":"10.1090/spmj/1770","DOIUrl":"https://doi.org/10.1090/spmj/1770","url":null,"abstract":"In the classical inverse theorems of constructive function theory, structural characteristics of an approximated function are estimated in terms of its best approximations. Most of the known proofs of the inverse theorems utilize Bernstein’s idea to expand the function in polynomials of its best approximation. In the present paper, Bernstein’s proof is modified by using integrals instead of sums. With this modification, it turns out that desired inequalities are based on identities similar to Frullani integrals. The considerations here are quite general, which allows one to obtain analogs of the inverse theorems for functionals in abstract Banach or even seminormed spaces. Then these abstract results are specified and inverse theorems in concrete spaces of functions are deduced, including weighted spaces, with explicit constants.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42336313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chapter 7. Angles between invariant subspaces","authors":"V. Vasyunin","doi":"10.1090/spmj/1767","DOIUrl":"https://doi.org/10.1090/spmj/1767","url":null,"abstract":"This paper is a chapter from the continuation of a survey by the author and N. K. Nikolski published in 1998. It contains two theorems describing when an invariant subspace has an invariant complement and when the angle between two given invariant subspaces is positive. The presentation involves the technique of the coordinate-free functional model.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49126980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nevanlinna characteristic and integral inequalities with maximal radial characteristic for meromorphic functions and for differences of subharmonic functions","authors":"B. Khabibullin","doi":"10.1090/spmj/1753","DOIUrl":"https://doi.org/10.1090/spmj/1753","url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\">\u0000 <mml:semantics>\u0000 <mml:mi>f</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">f</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> be a meromorphic function on the complex plane with Nevanlinna characteristic <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T left-parenthesis r comma f right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>T</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>r</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>f</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">T(r,f)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> and maximal radial characteristic <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ln upper M left-parenthesis t comma f right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>ln</mml:mi>\u0000 <mml:mo><!-- --></mml:mo>\u0000 <mml:mi>M</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>t</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>f</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">ln M(t,f)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, where <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M left-parenthesis t comma f right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>M</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>t</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>f</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">M(t,f)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is the maximum of the modulus <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartAbsoluteValue f EndAbsoluteValue\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo stretchy=\"false\">|</mml:mo>\u0000 </mml:mrow>\u0000 <mml:mi>f</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo stretchy=\"false\">|</mml:mo>\u0000 </mml:mrow>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">|f|</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> on circles centered at zero and of radius <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t\">\u0000 <mml:semantics>\u0000 <mml:mi>t</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">t</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. A number of well-known and widely used results make it possible to estimate from ","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45679529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}