Cauchy problem for the nonlinear Hirota equation in the class of periodic infinite-zone functions

IF 0.7 4区 数学 Q2 MATHEMATICS
G. Mannonov, A. Khasanov
{"title":"Cauchy problem for the nonlinear Hirota equation in the class of periodic infinite-zone functions","authors":"G. Mannonov, A. Khasanov","doi":"10.1090/spmj/1780","DOIUrl":null,"url":null,"abstract":"In this paper, the method of inverse spectral problem is used to integrate the nonlinear Hirota equation in the class of periodic infinite-zone functions. An evolution of the spectral data of the periodic Dirac operator is introduced, where the coefficient of this operator is the solution of the nonlinear Hirota equation. The solvability of the Cauchy problem for an infinite system of Dubrovin differential equations in the class of five times continuously differentiable periodic infinite-zone functions is shown. In addition, it is proved that if the initial function is a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi\"> <mml:semantics> <mml:mi>π<!-- π --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-periodic real-analytic function, then the solution of the Cauchy problem for the Hirota equation is also a real-analytic function in the variable <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"x\"> <mml:semantics> <mml:mi>x</mml:mi> <mml:annotation encoding=\"application/x-tex\">x</mml:annotation> </mml:semantics> </mml:math> </inline-formula>; and if the number <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi slash 2\"> <mml:semantics> <mml:mrow> <mml:mi>π<!-- π --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\pi /2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a period (antiperiod) of the initial function, then the number <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi slash 2\"> <mml:semantics> <mml:mrow> <mml:mi>π<!-- π --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\pi /2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a period (antiperiod) in the variable <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"x\"> <mml:semantics> <mml:mi>x</mml:mi> <mml:annotation encoding=\"application/x-tex\">x</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the solution of the Cauchy problems for the Hirota equation.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" 31","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/spmj/1780","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the method of inverse spectral problem is used to integrate the nonlinear Hirota equation in the class of periodic infinite-zone functions. An evolution of the spectral data of the periodic Dirac operator is introduced, where the coefficient of this operator is the solution of the nonlinear Hirota equation. The solvability of the Cauchy problem for an infinite system of Dubrovin differential equations in the class of five times continuously differentiable periodic infinite-zone functions is shown. In addition, it is proved that if the initial function is a π \pi -periodic real-analytic function, then the solution of the Cauchy problem for the Hirota equation is also a real-analytic function in the variable x x ; and if the number π / 2 \pi /2 is a period (antiperiod) of the initial function, then the number π / 2 \pi /2 is a period (antiperiod) in the variable x x of the solution of the Cauchy problems for the Hirota equation.
周期无穷区函数中非线性Hirota方程的Cauchy问题
本文利用谱逆问题的方法对一类周期无穷区函数中的非线性Hirota方程进行积分。介绍了周期狄拉克算子谱数据的演化,其中该算子的系数是非线性Hirota方程的解。给出了一类五次连续可微周期无穷带函数的Dubrovin微分方程无穷系的Cauchy问题的可解性。此外,证明了如果初始函数是π \ π -周期实解析函数,则Hirota方程的Cauchy问题的解也是变量x x上的实解析函数;如果数π /2 \pi /2是初始函数的一个周期(反周期),那么数π /2 \pi /2就是变量x x的一个周期(反周期),这是Hirota方程的柯西问题的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
52
审稿时长
>12 weeks
期刊介绍: This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信