{"title":"On finite algebras with probability limit laws","authors":"A. Yashunsky","doi":"10.1090/spmj/1782","DOIUrl":null,"url":null,"abstract":"An algebraic system has a probability limit law if the values of terms with independent identically distributed random variables have probability distributions that tend to a certain limit (the limit law) as the number of variables in a term grows. For algebraic systems on finite sets, it is shown that, under some geometric conditions on the set of term value distributions, the existence of a limit law strongly restricts the set of possible operations in the algebraic system. In particular, a system that has a limit law without zero components necessarily consists of quasigroup operations (with arbitrary arity), while the limit law is necessarily uniform. Sufficient conditions are also proved for a system to have a probability limit law, which partly match the necessary ones.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/spmj/1782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
An algebraic system has a probability limit law if the values of terms with independent identically distributed random variables have probability distributions that tend to a certain limit (the limit law) as the number of variables in a term grows. For algebraic systems on finite sets, it is shown that, under some geometric conditions on the set of term value distributions, the existence of a limit law strongly restricts the set of possible operations in the algebraic system. In particular, a system that has a limit law without zero components necessarily consists of quasigroup operations (with arbitrary arity), while the limit law is necessarily uniform. Sufficient conditions are also proved for a system to have a probability limit law, which partly match the necessary ones.