M. Novikov
求助PDF
{"title":"双凹函数极小性的充分条件","authors":"M. Novikov","doi":"10.1090/spmj/1781","DOIUrl":null,"url":null,"abstract":"This paper describes sufficient conditions under which a biconcave function <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper B colon German upper S equals StartSet left-parenthesis x comma y right-parenthesis element-of double-struck upper R squared colon x minus 2 less-than-or-equal-to y less-than-or-equal-to x plus 2 EndSet right-arrow double-struck upper R\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">B</mml:mi> </mml:mrow> <mml:mo>:<!-- : --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"fraktur\">S</mml:mi> </mml:mrow> <mml:mo>=</mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>y</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>:<!-- : --></mml:mo> <mml:mi>x</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>y</mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>x</mml:mi> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> <mml:mo stretchy=\"false\">→<!-- → --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {B}\\colon \\mathfrak {S}=\\{ (x,y)\\in \\mathbb {R}^2\\colon x-2\\le y\\le x+2 \\}\\to \\mathbb {R}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is minimal with respect to an obstacle <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L colon German upper S right-arrow left-bracket negative normal infinity comma plus normal infinity right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>L</mml:mi> <mml:mo>:<!-- : --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"fraktur\">S</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">→<!-- → --></mml:mo> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> <mml:mo>,</mml:mo> <mml:mo>+</mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L\\colon \\mathfrak {S}\\to [-\\infty ,+\\infty )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, that is, it is the pointwise minimal among all biconcave functions <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B colon German upper S right-arrow double-struck upper R\"> <mml:semantics> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>:<!-- : --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"fraktur\">S</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">→<!-- → --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">B\\colon \\mathfrak {S}\\to \\mathbb {R}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that satisfy the inequality <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B greater-than-or-equal-to upper L\"> <mml:semantics> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mi>L</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">B\\ge L</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" 9","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sufficient conditions for the minimality of biconcave functions\",\"authors\":\"M. Novikov\",\"doi\":\"10.1090/spmj/1781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes sufficient conditions under which a biconcave function <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper B colon German upper S equals StartSet left-parenthesis x comma y right-parenthesis element-of double-struck upper R squared colon x minus 2 less-than-or-equal-to y less-than-or-equal-to x plus 2 EndSet right-arrow double-struck upper R\\\"> <mml:semantics> <mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">B</mml:mi> </mml:mrow> <mml:mo>:<!-- : --></mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"fraktur\\\">S</mml:mi> </mml:mrow> <mml:mo>=</mml:mo> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>y</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msup> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>:<!-- : --></mml:mo> <mml:mi>x</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>y</mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>x</mml:mi> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo> <mml:mo stretchy=\\\"false\\\">→<!-- → --></mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {B}\\\\colon \\\\mathfrak {S}=\\\\{ (x,y)\\\\in \\\\mathbb {R}^2\\\\colon x-2\\\\le y\\\\le x+2 \\\\}\\\\to \\\\mathbb {R}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is minimal with respect to an obstacle <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L colon German upper S right-arrow left-bracket negative normal infinity comma plus normal infinity right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>L</mml:mi> <mml:mo>:<!-- : --></mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"fraktur\\\">S</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">→<!-- → --></mml:mo> <mml:mo stretchy=\\\"false\\\">[</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> <mml:mo>,</mml:mo> <mml:mo>+</mml:mo> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">L\\\\colon \\\\mathfrak {S}\\\\to [-\\\\infty ,+\\\\infty )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, that is, it is the pointwise minimal among all biconcave functions <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper B colon German upper S right-arrow double-struck upper R\\\"> <mml:semantics> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>:<!-- : --></mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"fraktur\\\">S</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">→<!-- → --></mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">B\\\\colon \\\\mathfrak {S}\\\\to \\\\mathbb {R}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that satisfy the inequality <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper B greater-than-or-equal-to upper L\\\"> <mml:semantics> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mi>L</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">B\\\\ge L</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.\",\"PeriodicalId\":51162,\"journal\":{\"name\":\"St Petersburg Mathematical Journal\",\"volume\":\" 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"St Petersburg Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/spmj/1781\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/spmj/1781","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
引用
批量引用
Sufficient conditions for the minimality of biconcave functions
This paper describes sufficient conditions under which a biconcave function B : S = { ( x , y ) ∈ R 2 : x − 2 ≤ y ≤ x + 2 } → R \mathcal {B}\colon \mathfrak {S}=\{ (x,y)\in \mathbb {R}^2\colon x-2\le y\le x+2 \}\to \mathbb {R} is minimal with respect to an obstacle L : S → [ − ∞ , + ∞ ) L\colon \mathfrak {S}\to [-\infty ,+\infty ) , that is, it is the pointwise minimal among all biconcave functions B : S → R B\colon \mathfrak {S}\to \mathbb {R} that satisfy the inequality B ≥ L B\ge L .