St Petersburg Mathematical Journal最新文献

筛选
英文 中文
The Maxwell system in nonhomogeneous anisotropic waveguides with slowly stabilizing characteristics of the filling medium 具有慢稳定填充介质特性的非均匀各向异性波导中的Maxwell系统
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2023-07-26 DOI: 10.1090/spmj/1773
B. Plamenevskii, A. Poretskii
{"title":"The Maxwell system in nonhomogeneous anisotropic waveguides with slowly stabilizing characteristics of the filling medium","authors":"B. Plamenevskii, A. Poretskii","doi":"10.1090/spmj/1773","DOIUrl":"https://doi.org/10.1090/spmj/1773","url":null,"abstract":"In a domain having several cylindrical outlets to infinity, the stationary Maxwell system with perfectly conductive boundary conditions is studied. The dielectric permittivity and magnetic permeability are assumed to be arbitrary positive definite matrix-valued functions that slowly stabilize at infinity. The authors introduce the scattering matrix, establish the unique solvability of the problem with radiation conditions at infinity, and describe the asymptotics of solutions.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43624988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
General elementary solution of a 𝑞-sided convolution type homogeneous equation 𝑞-sided卷积型齐次方程的一般初等解
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2023-07-26 DOI: 10.1090/spmj/1774
Yuriy Saranchuk, A. Shishkin
{"title":"General elementary solution of a 𝑞-sided convolution type homogeneous equation","authors":"Yuriy Saranchuk, A. Shishkin","doi":"10.1090/spmj/1774","DOIUrl":"https://doi.org/10.1090/spmj/1774","url":null,"abstract":"Exponential polynomials satisfying a homogeneous equation of convolution type are called its elementary solutions. The article is devoted to convolution-type operators in the complex domain that generalize the well-known operators of \u0000\u0000 \u0000 q\u0000 q\u0000 \u0000\u0000-sided convolution and \u0000\u0000 \u0000 π\u0000 pi\u0000 \u0000\u0000-convolution. The properties of such operators are investigated and the general form of elementary solutions (general elementary solution) of a homogeneous equation of \u0000\u0000 \u0000 q\u0000 q\u0000 \u0000\u0000-sided convolution type is described.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45564488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the constants in abstract inverse theorems of approximation theory 关于近似理论抽象逆定理中的常数
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2023-07-26 DOI: 10.1090/spmj/1770
O. Vinogradov
{"title":"On the constants in abstract inverse theorems of approximation theory","authors":"O. Vinogradov","doi":"10.1090/spmj/1770","DOIUrl":"https://doi.org/10.1090/spmj/1770","url":null,"abstract":"In the classical inverse theorems of constructive function theory, structural characteristics of an approximated function are estimated in terms of its best approximations. Most of the known proofs of the inverse theorems utilize Bernstein’s idea to expand the function in polynomials of its best approximation. In the present paper, Bernstein’s proof is modified by using integrals instead of sums. With this modification, it turns out that desired inequalities are based on identities similar to Frullani integrals. The considerations here are quite general, which allows one to obtain analogs of the inverse theorems for functionals in abstract Banach or even seminormed spaces. Then these abstract results are specified and inverse theorems in concrete spaces of functions are deduced, including weighted spaces, with explicit constants.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42336313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functions of perturbed pairs of noncommutative dissipative operators 扰动非交换耗散算子对的函数
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2023-06-07 DOI: 10.1090/spmj/1758
A. Aleksandrov, V. Peller
{"title":"Functions of perturbed pairs of noncommutative dissipative operators","authors":"A. Aleksandrov, V. Peller","doi":"10.1090/spmj/1758","DOIUrl":"https://doi.org/10.1090/spmj/1758","url":null,"abstract":"<p>Let a function <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\">\u0000 <mml:semantics>\u0000 <mml:mi>f</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">f</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> belong to the inhomogeneous analytic Besov space <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper B Subscript normal infinity comma 1 Superscript 1 Baseline right-parenthesis Subscript plus Baseline left-parenthesis double-struck upper R squared right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:msubsup>\u0000 <mml:mi>B</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:mrow>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mspace width=\"thinmathspace\" />\u0000 <mml:mn>1</mml:mn>\u0000 </mml:mrow>\u0000 </mml:msubsup>\u0000 <mml:msub>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mo>+</mml:mo>\u0000 </mml:msub>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">R</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:msup>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">(B_{infty ,1}^{,1})_+(mathbb {R}^2)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. For a pair <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper L comma upper M right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>L</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>M</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">(L,M)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of not necessarily commuting maximal dissipative operators, the function <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f left-parenthesis upper L comma upper M right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>f</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>L</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>M</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">f(L,M)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\">\u0000 <mml:semantics>\u0000 <mml:mi>L</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">L</mml:annotation>\u0000 </mml:semantics","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48273739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the maximal ideal spaces of 𝐇^{∞} on coverings of bordered Riemann surfaces 有边Riemann曲面上的最大理想空间(^{∞}
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2023-06-07 DOI: 10.1090/spmj/1761
A. Brudnyi
{"title":"On the maximal ideal spaces of 𝐇^{∞} on coverings of bordered Riemann surfaces","authors":"A. Brudnyi","doi":"10.1090/spmj/1761","DOIUrl":"https://doi.org/10.1090/spmj/1761","url":null,"abstract":"The paper describes the topological structure of the maximal ideal space of the algebra of bounded holomorphic functions on a covering of a bordered Riemann surface. Some applications of the obtained results to the theory of bounded operator-valued holomorphic functions on Riemann surfaces are presented.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43776472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Power dilation systems {𝑓(𝑧^{𝑘})}_{𝑘∈ℕ} in Dirichlet-type spaces 权力扩张系统{𝑓(𝑧^{𝑘})}_{𝑘∈ℕ}在Dirichlet-type空间中
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2023-06-07 DOI: 10.1090/spmj/1762
H. Dan, K. Guo
{"title":"Power dilation systems {𝑓(𝑧^{𝑘})}_{𝑘∈ℕ} in Dirichlet-type spaces","authors":"H. Dan, K. Guo","doi":"10.1090/spmj/1762","DOIUrl":"https://doi.org/10.1090/spmj/1762","url":null,"abstract":"<p>Power dilation systems <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-brace f left-parenthesis z Superscript k Baseline right-parenthesis right-brace Subscript k element-of double-struck upper N\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\u0000 <mml:mi>f</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:msup>\u0000 <mml:mi>z</mml:mi>\u0000 <mml:mi>k</mml:mi>\u0000 </mml:msup>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:msub>\u0000 <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi>k</mml:mi>\u0000 <mml:mo>∈<!-- ∈ --></mml:mo>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">N</mml:mi>\u0000 </mml:mrow>\u0000 </mml:mrow>\u0000 </mml:msub>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">{f(z^k)}_{kin mathbb {N}}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> in Dirichlet-type spaces <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper D Subscript t Baseline left-parenthesis t element-of double-struck upper R right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msub>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">D</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mi>t</mml:mi>\u0000 </mml:msub>\u0000 <mml:mtext> </mml:mtext>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>t</mml:mi>\u0000 <mml:mo>∈<!-- ∈ --></mml:mo>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">R</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mathcal {D}_t (tin mathbb {R})</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> are treated. When <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t not-equals 0\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>t</mml:mi>\u0000 <mml:mo>≠<!-- ≠ --></mml:mo>\u0000 <mml:mn>0</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">tneq 0</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, it is proved that a system of functions <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-brace f left-parenthesis z Superscript k Baseline right-parenthesis right-brace Subscript k element-of double-struck upper N\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\u0000 <mml:mi>f</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:msup>\u0000 <mml:mi>z</mml:mi>\u0000 <mml:mi>k</mml:mi>\u0000 </mml:msup>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:msub>\u0000 <mml:mo fenc","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45090940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chapter 7. Angles between invariant subspaces 第7章。不变子空间之间的角度
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2023-06-07 DOI: 10.1090/spmj/1767
V. Vasyunin
{"title":"Chapter 7. Angles between invariant subspaces","authors":"V. Vasyunin","doi":"10.1090/spmj/1767","DOIUrl":"https://doi.org/10.1090/spmj/1767","url":null,"abstract":"This paper is a chapter from the continuation of a survey by the author and N. K. Nikolski published in 1998. It contains two theorems describing when an invariant subspace has an invariant complement and when the angle between two given invariant subspaces is positive. The presentation involves the technique of the coordinate-free functional model.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49126980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stationary phase method, powers of functions, and applications to functional analysis 平稳相方法、函数的幂及其在函数分析中的应用
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2023-06-07 DOI: 10.1090/spmj/1757
H. Queffélec, R. Zarouf
{"title":"Stationary phase method, powers of functions, and applications to functional analysis","authors":"H. Queffélec, R. Zarouf","doi":"10.1090/spmj/1757","DOIUrl":"https://doi.org/10.1090/spmj/1757","url":null,"abstract":"The utility of the (weighted) van der Corput inequalities or of the stationary phase method is illustrated with various examples borrowed from: differentiability issues (Riemann’s function and related); functional analysis on Banach spaces or algebras of analytic functions (composition operators); and local Banach space geometry (Schäffer’s problem).","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46166546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differentiable functions on modules and the equation 𝑔𝑟𝑎𝑑(𝑤)=𝖬𝗀𝗋𝖺𝖽(𝗏) 可微的函数模块和方程𝑔𝑟𝑎𝑑(𝑤)=𝖬𝗀𝗋𝖺𝖽(𝗏)
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2023-03-22 DOI: 10.1090/spmj/1754
K. Ciosmak
{"title":"Differentiable functions on modules and the equation 𝑔𝑟𝑎𝑑(𝑤)=𝖬𝗀𝗋𝖺𝖽(𝗏)","authors":"K. Ciosmak","doi":"10.1090/spmj/1754","DOIUrl":"https://doi.org/10.1090/spmj/1754","url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\u0000 <mml:semantics>\u0000 <mml:mi>A</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> be a finite-dimensional, commutative algebra over <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R\">\u0000 <mml:semantics>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">R</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbb {R}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> or <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C\">\u0000 <mml:semantics>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">C</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbb {C}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. The notion of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\u0000 <mml:semantics>\u0000 <mml:mi>A</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-differentiable functions on <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\u0000 <mml:semantics>\u0000 <mml:mi>A</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is extended to develop a theory of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\u0000 <mml:semantics>\u0000 <mml:mi>A</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-differentiable functions on finitely generated <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\u0000 <mml:semantics>\u0000 <mml:mi>A</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-modules. Let <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper U\">\u0000 <mml:semantics>\u0000 <mml:mi>U</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">U</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> be an open, bounded and convex subset of such a module. An explicit formula is given for <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\u0000 <mml:semantics>\u0000 <mml:mi>A</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-form","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43863394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nevanlinna characteristic and integral inequalities with maximal radial characteristic for meromorphic functions and for differences of subharmonic functions 亚纯函数和次调和函数差的Nevanlinna特征和具有最大径向特征的积分不等式
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2023-03-22 DOI: 10.1090/spmj/1753
B. Khabibullin
{"title":"Nevanlinna characteristic and integral inequalities with maximal radial characteristic for meromorphic functions and for differences of subharmonic functions","authors":"B. Khabibullin","doi":"10.1090/spmj/1753","DOIUrl":"https://doi.org/10.1090/spmj/1753","url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\">\u0000 <mml:semantics>\u0000 <mml:mi>f</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">f</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> be a meromorphic function on the complex plane with Nevanlinna characteristic <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T left-parenthesis r comma f right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>T</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>r</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>f</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">T(r,f)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> and maximal radial characteristic <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ln upper M left-parenthesis t comma f right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>ln</mml:mi>\u0000 <mml:mo>⁡<!-- ⁡ --></mml:mo>\u0000 <mml:mi>M</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>t</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>f</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">ln M(t,f)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, where <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M left-parenthesis t comma f right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>M</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>t</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>f</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">M(t,f)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is the maximum of the modulus <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartAbsoluteValue f EndAbsoluteValue\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo stretchy=\"false\">|</mml:mo>\u0000 </mml:mrow>\u0000 <mml:mi>f</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo stretchy=\"false\">|</mml:mo>\u0000 </mml:mrow>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">|f|</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> on circles centered at zero and of radius <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t\">\u0000 <mml:semantics>\u0000 <mml:mi>t</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">t</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. A number of well-known and widely used results make it possible to estimate from ","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45679529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信