权力扩张系统{𝑓(𝑧^{𝑘})}_{𝑘∈ℕ}在Dirichlet-type空间中

IF 0.7 4区 数学 Q2 MATHEMATICS
H. Dan, K. Guo
{"title":"权力扩张系统{𝑓(𝑧^{𝑘})}_{𝑘∈ℕ}在Dirichlet-type空间中","authors":"H. Dan, K. Guo","doi":"10.1090/spmj/1762","DOIUrl":null,"url":null,"abstract":"<p>Power dilation systems <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-brace f left-parenthesis z Superscript k Baseline right-parenthesis right-brace Subscript k element-of double-struck upper N\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:mi>f</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>z</mml:mi>\n <mml:mi>k</mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:msub>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>k</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">N</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\{f(z^k)\\}_{k\\in \\mathbb {N}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in Dirichlet-type spaces <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper D Subscript t Baseline left-parenthesis t element-of double-struck upper R right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">D</mml:mi>\n </mml:mrow>\n <mml:mi>t</mml:mi>\n </mml:msub>\n <mml:mtext> </mml:mtext>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {D}_t\\ (t\\in \\mathbb {R})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are treated. When <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t not-equals 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>t</mml:mi>\n <mml:mo>≠<!-- ≠ --></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">t\\neq 0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, it is proved that a system of functions <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-brace f left-parenthesis z Superscript k Baseline right-parenthesis right-brace Subscript k element-of double-struck upper N\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:mi>f</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>z</mml:mi>\n <mml:mi>k</mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:msub>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>k</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">N</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\{f(z^k)\\}_{k\\in \\mathbb {N}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is orthogonal in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper D Subscript t\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">D</mml:mi>\n </mml:mrow>\n <mml:mi>t</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {D}_t</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> only if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f equals c z Superscript upper N\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>f</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mi>c</mml:mi>\n <mml:msup>\n <mml:mi>z</mml:mi>\n <mml:mi>N</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">f=cz^N</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for some constant <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"c\">\n <mml:semantics>\n <mml:mi>c</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">c</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and some positive integer <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\">\n <mml:semantics>\n <mml:mi>N</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">N</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Complete characterizations are also given of unconditional bases and frames formed by power dilation systems of Dirichlet-type spaces. Finally, these results are applied to the operator theoretic case of the moment problem on Dirichlet-type spaces.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power dilation systems {𝑓(𝑧^{𝑘})}_{𝑘∈ℕ} in Dirichlet-type spaces\",\"authors\":\"H. Dan, K. Guo\",\"doi\":\"10.1090/spmj/1762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Power dilation systems <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-brace f left-parenthesis z Superscript k Baseline right-parenthesis right-brace Subscript k element-of double-struck upper N\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo>\\n <mml:mi>f</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msup>\\n <mml:mi>z</mml:mi>\\n <mml:mi>k</mml:mi>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:msub>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>k</mml:mi>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">N</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\{f(z^k)\\\\}_{k\\\\in \\\\mathbb {N}}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> in Dirichlet-type spaces <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper D Subscript t Baseline left-parenthesis t element-of double-struck upper R right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">D</mml:mi>\\n </mml:mrow>\\n <mml:mi>t</mml:mi>\\n </mml:msub>\\n <mml:mtext> </mml:mtext>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>t</mml:mi>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {D}_t\\\\ (t\\\\in \\\\mathbb {R})</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> are treated. When <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"t not-equals 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>t</mml:mi>\\n <mml:mo>≠<!-- ≠ --></mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">t\\\\neq 0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, it is proved that a system of functions <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-brace f left-parenthesis z Superscript k Baseline right-parenthesis right-brace Subscript k element-of double-struck upper N\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo>\\n <mml:mi>f</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msup>\\n <mml:mi>z</mml:mi>\\n <mml:mi>k</mml:mi>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:msub>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>k</mml:mi>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">N</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\{f(z^k)\\\\}_{k\\\\in \\\\mathbb {N}}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is orthogonal in <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper D Subscript t\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">D</mml:mi>\\n </mml:mrow>\\n <mml:mi>t</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {D}_t</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> only if <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"f equals c z Superscript upper N\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>f</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mi>c</mml:mi>\\n <mml:msup>\\n <mml:mi>z</mml:mi>\\n <mml:mi>N</mml:mi>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">f=cz^N</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> for some constant <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"c\\\">\\n <mml:semantics>\\n <mml:mi>c</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">c</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and some positive integer <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N\\\">\\n <mml:semantics>\\n <mml:mi>N</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">N</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Complete characterizations are also given of unconditional bases and frames formed by power dilation systems of Dirichlet-type spaces. Finally, these results are applied to the operator theoretic case of the moment problem on Dirichlet-type spaces.</p>\",\"PeriodicalId\":51162,\"journal\":{\"name\":\"St Petersburg Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"St Petersburg Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/spmj/1762\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1762","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对dirichlet型空间中幂展开式系统{f(z k)} k∈N \{f(z k)\}_{k\in \mathbb {N}}中的dt (t∈R)\ mathcal {D}_t\ (t\in \mathbb {R})进行处理。当t≠0 t\neq 0时,证明了一个函数系统{f(z k)} k∈N \{f(z k)\}_{k\in \mathbb {N}}在dt \mathbb {D}_t中是正交的,只有当f=cz N f=cz^N对于某个常数c c和某个正整数N N。给出了狄利克雷型空间的幂膨胀系统所形成的无条件基和框架的完备刻画。最后,将这些结果应用于dirichlet型空间上矩问题的算符理论情形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power dilation systems {𝑓(𝑧^{𝑘})}_{𝑘∈ℕ} in Dirichlet-type spaces

Power dilation systems { f ( z k ) } k N \{f(z^k)\}_{k\in \mathbb {N}} in Dirichlet-type spaces D t   ( t R ) \mathcal {D}_t\ (t\in \mathbb {R}) are treated. When t 0 t\neq 0 , it is proved that a system of functions { f ( z k ) } k N \{f(z^k)\}_{k\in \mathbb {N}} is orthogonal in D t \mathcal {D}_t only if f = c z N f=cz^N for some constant c c and some positive integer N N . Complete characterizations are also given of unconditional bases and frames formed by power dilation systems of Dirichlet-type spaces. Finally, these results are applied to the operator theoretic case of the moment problem on Dirichlet-type spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
52
审稿时长
>12 weeks
期刊介绍: This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信