Nevanlinna characteristic and integral inequalities with maximal radial characteristic for meromorphic functions and for differences of subharmonic functions
{"title":"Nevanlinna characteristic and integral inequalities with maximal radial characteristic for meromorphic functions and for differences of subharmonic functions","authors":"B. Khabibullin","doi":"10.1090/spmj/1753","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\">\n <mml:semantics>\n <mml:mi>f</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a meromorphic function on the complex plane with Nevanlinna characteristic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T left-parenthesis r comma f right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>T</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>r</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>f</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">T(r,f)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and maximal radial characteristic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ln upper M left-parenthesis t comma f right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>ln</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mi>M</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>f</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\ln M(t,f)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M left-parenthesis t comma f right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>M</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>f</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">M(t,f)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the maximum of the modulus <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartAbsoluteValue f EndAbsoluteValue\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>f</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">|f|</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> on circles centered at zero and of radius <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t\">\n <mml:semantics>\n <mml:mi>t</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">t</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. A number of well-known and widely used results make it possible to estimate from above the integrals of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ln upper M left-parenthesis t comma f right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>ln</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mi>M</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>f</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\ln M (t,f)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> over subsets <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\n <mml:semantics>\n <mml:mi>E</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> on segments <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket 0 comma r right-bracket\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mi>r</mml:mi>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">[0,r]</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in terms of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T left-parenthesis r comma f right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>T</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>r</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>f</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">T(r,f)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and the linear Lebesgue measure of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\n <mml:semantics>\n <mml:mi>E</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In the paper, such estimates are obtained for the Lebesgue–Stieltjes integrals of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ln upper M left-parenthesis t comma f right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>ln</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mi>M</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>f</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\ln M(t,f)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with respect to an increasing integration function <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\">\n <mml:semantics>\n <mml:mi>m</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">m</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, and the sets <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\n <mml:semantics>\n <mml:mi>E</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> on which the function <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\">\n <mml:semantics>\n <mml:mi>m</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">m</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is not constant can have fractal nature. At the same time, it is possible to obtain nontrivial estimates in terms of the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h\">\n <mml:semantics>\n <mml:mi>h</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">h</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-content and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h\">\n <mml:semantics>\n <mml:mi>h</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">h</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-Hausdorff measure of the set <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\n <mml:semantics>\n <mml:mi>E</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, as well as their partial <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\n <mml:semantics>\n <mml:mi>d</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-dimensional power versions with <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d element-of left-parenthesis 0 comma 1 right-bracket\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>d</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">d\\in (0,1]</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. All preceding similar estimates known to the author correspond to the extreme case of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d equals 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>d</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">d=1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and an absolutely continuous integration function <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\">\n <mml:semantics>\n <mml:mi>m</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">m</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with density of class <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript p\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mi>p</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">L^p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p greater-than 1\">\n <mml:semantics>\n <mm","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1753","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let ff be a meromorphic function on the complex plane with Nevanlinna characteristic T(r,f)T(r,f) and maximal radial characteristic lnM(t,f)\ln M(t,f), where M(t,f)M(t,f) is the maximum of the modulus |f||f| on circles centered at zero and of radius tt. A number of well-known and widely used results make it possible to estimate from above the integrals of lnM(t,f)\ln M (t,f) over subsets EE on segments [0,r][0,r] in terms of T(r,f)T(r,f) and the linear Lebesgue measure of EE. In the paper, such estimates are obtained for the Lebesgue–Stieltjes integrals of lnM(t,f)\ln M(t,f) with respect to an increasing integration function mm, and the sets EE on which the function mm is not constant can have fractal nature. At the same time, it is possible to obtain nontrivial estimates in terms of the hh-content and hh-Hausdorff measure of the set EE, as well as their partial dd-dimensional power versions with d∈(0,1]d\in (0,1]. All preceding similar estimates known to the author correspond to the extreme case of d=1d=1 and an absolutely continuous integration function mm with density of class LpL^p for
期刊介绍:
This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.