On the constants in abstract inverse theorems of approximation theory

IF 0.7 4区 数学 Q2 MATHEMATICS
O. Vinogradov
{"title":"On the constants in abstract inverse theorems of approximation theory","authors":"O. Vinogradov","doi":"10.1090/spmj/1770","DOIUrl":null,"url":null,"abstract":"In the classical inverse theorems of constructive function theory, structural characteristics of an approximated function are estimated in terms of its best approximations. Most of the known proofs of the inverse theorems utilize Bernstein’s idea to expand the function in polynomials of its best approximation. In the present paper, Bernstein’s proof is modified by using integrals instead of sums. With this modification, it turns out that desired inequalities are based on identities similar to Frullani integrals. The considerations here are quite general, which allows one to obtain analogs of the inverse theorems for functionals in abstract Banach or even seminormed spaces. Then these abstract results are specified and inverse theorems in concrete spaces of functions are deduced, including weighted spaces, with explicit constants.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1770","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the classical inverse theorems of constructive function theory, structural characteristics of an approximated function are estimated in terms of its best approximations. Most of the known proofs of the inverse theorems utilize Bernstein’s idea to expand the function in polynomials of its best approximation. In the present paper, Bernstein’s proof is modified by using integrals instead of sums. With this modification, it turns out that desired inequalities are based on identities similar to Frullani integrals. The considerations here are quite general, which allows one to obtain analogs of the inverse theorems for functionals in abstract Banach or even seminormed spaces. Then these abstract results are specified and inverse theorems in concrete spaces of functions are deduced, including weighted spaces, with explicit constants.
关于近似理论抽象逆定理中的常数
在构造函数理论的经典逆定理中,近似函数的结构特征是根据其最佳逼近来估计的。大多数已知的逆定理的证明都利用Bernstein的思想来扩展其最佳逼近多项式中的函数。本文用积分代替和对Bernstein的证明进行了改进。通过这种修改,证明了期望的不等式是基于类似于Frullani积分的恒等式。这里的考虑是相当普遍的,这允许我们在抽象Banach甚至半成形空间中获得泛函逆定理的类似物。然后给出了这些抽象结果,并推导了函数具体空间中的逆定理,包括具有显式常数的加权空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
52
审稿时长
>12 weeks
期刊介绍: This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信