{"title":"具有慢稳定填充介质特性的非均匀各向异性波导中的Maxwell系统","authors":"B. Plamenevskii, A. Poretskii","doi":"10.1090/spmj/1773","DOIUrl":null,"url":null,"abstract":"In a domain having several cylindrical outlets to infinity, the stationary Maxwell system with perfectly conductive boundary conditions is studied. The dielectric permittivity and magnetic permeability are assumed to be arbitrary positive definite matrix-valued functions that slowly stabilize at infinity. The authors introduce the scattering matrix, establish the unique solvability of the problem with radiation conditions at infinity, and describe the asymptotics of solutions.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Maxwell system in nonhomogeneous anisotropic waveguides with slowly stabilizing characteristics of the filling medium\",\"authors\":\"B. Plamenevskii, A. Poretskii\",\"doi\":\"10.1090/spmj/1773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a domain having several cylindrical outlets to infinity, the stationary Maxwell system with perfectly conductive boundary conditions is studied. The dielectric permittivity and magnetic permeability are assumed to be arbitrary positive definite matrix-valued functions that slowly stabilize at infinity. The authors introduce the scattering matrix, establish the unique solvability of the problem with radiation conditions at infinity, and describe the asymptotics of solutions.\",\"PeriodicalId\":51162,\"journal\":{\"name\":\"St Petersburg Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"St Petersburg Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/spmj/1773\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1773","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Maxwell system in nonhomogeneous anisotropic waveguides with slowly stabilizing characteristics of the filling medium
In a domain having several cylindrical outlets to infinity, the stationary Maxwell system with perfectly conductive boundary conditions is studied. The dielectric permittivity and magnetic permeability are assumed to be arbitrary positive definite matrix-valued functions that slowly stabilize at infinity. The authors introduce the scattering matrix, establish the unique solvability of the problem with radiation conditions at infinity, and describe the asymptotics of solutions.
期刊介绍:
This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.