具有慢稳定填充介质特性的非均匀各向异性波导中的Maxwell系统

IF 0.7 4区 数学 Q2 MATHEMATICS
B. Plamenevskii, A. Poretskii
{"title":"具有慢稳定填充介质特性的非均匀各向异性波导中的Maxwell系统","authors":"B. Plamenevskii, A. Poretskii","doi":"10.1090/spmj/1773","DOIUrl":null,"url":null,"abstract":"In a domain having several cylindrical outlets to infinity, the stationary Maxwell system with perfectly conductive boundary conditions is studied. The dielectric permittivity and magnetic permeability are assumed to be arbitrary positive definite matrix-valued functions that slowly stabilize at infinity. The authors introduce the scattering matrix, establish the unique solvability of the problem with radiation conditions at infinity, and describe the asymptotics of solutions.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Maxwell system in nonhomogeneous anisotropic waveguides with slowly stabilizing characteristics of the filling medium\",\"authors\":\"B. Plamenevskii, A. Poretskii\",\"doi\":\"10.1090/spmj/1773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a domain having several cylindrical outlets to infinity, the stationary Maxwell system with perfectly conductive boundary conditions is studied. The dielectric permittivity and magnetic permeability are assumed to be arbitrary positive definite matrix-valued functions that slowly stabilize at infinity. The authors introduce the scattering matrix, establish the unique solvability of the problem with radiation conditions at infinity, and describe the asymptotics of solutions.\",\"PeriodicalId\":51162,\"journal\":{\"name\":\"St Petersburg Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"St Petersburg Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/spmj/1773\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1773","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在具有多个圆柱出口到无穷远的区域上,研究了具有完全导电边界条件的平稳麦克斯韦系统。假设介电常数和磁导率是任意正定的矩阵值函数,在无穷远处缓慢稳定。引入散射矩阵,建立了具有无穷远辐射条件的问题的唯一可解性,并描述了其解的渐近性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Maxwell system in nonhomogeneous anisotropic waveguides with slowly stabilizing characteristics of the filling medium
In a domain having several cylindrical outlets to infinity, the stationary Maxwell system with perfectly conductive boundary conditions is studied. The dielectric permittivity and magnetic permeability are assumed to be arbitrary positive definite matrix-valued functions that slowly stabilize at infinity. The authors introduce the scattering matrix, establish the unique solvability of the problem with radiation conditions at infinity, and describe the asymptotics of solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
52
审稿时长
>12 weeks
期刊介绍: This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信