Y. Belousov, M. Karev, A. Malyutin, A. Miller, E. Fominykh
{"title":"Lernaean knots and band surgery","authors":"Y. Belousov, M. Karev, A. Malyutin, A. Miller, E. Fominykh","doi":"10.1090/spmj/1687","DOIUrl":"https://doi.org/10.1090/spmj/1687","url":null,"abstract":"The paper is devoted to a line of the knot theory related to the conjecture on the additivity of the crossing number for knots under connected sum. A series of weak versions of this conjecture are proved. Many of these versions are formulated in terms of the band surgery graph also called the \u0000\u0000 \u0000 \u0000 H\u0000 (\u0000 2\u0000 )\u0000 \u0000 H(2)\u0000 \u0000\u0000-Gordian graph.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45402357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the sharpness of assumptions in the Federer theorem","authors":"B. Makarov, A. Podkorytov","doi":"10.1090/spmj/1691","DOIUrl":"https://doi.org/10.1090/spmj/1691","url":null,"abstract":"<p>The Federer theorem deals with the “massiveness” of the set of critical values for a <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t\">\u0000 <mml:semantics>\u0000 <mml:mi>t</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">t</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-smooth map acting from <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript m\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">R</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mi>m</mml:mi>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbb R^m</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> to <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript n\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">R</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mi>n</mml:mi>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbb R^n</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>: it claims that the Hausdorff <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\u0000 <mml:semantics>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-measure of this set is zero for certain <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\u0000 <mml:semantics>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. If <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n greater-than-or-equal-to m\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>n</mml:mi>\u0000 <mml:mo>≥<!-- ≥ --></mml:mo>\u0000 <mml:mi>m</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">nge m</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, it has long been known that the assumption of that theorem relating the parameters <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m comma n comma t comma p\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>m</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>n</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>t</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>p</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">m,n,t,p</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is sharp. Here it is shown by an example that this assumption is also sharp for <inline-formula content-typ","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45598824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Clebsh–Gordan coefficients for the algebra 𝔤𝔩₃ and hypergeometric functions","authors":"D. Artamonov","doi":"10.1090/spmj/1686","DOIUrl":"https://doi.org/10.1090/spmj/1686","url":null,"abstract":"The Clebsh–Gordan coefficients for the Lie algebra \u0000\u0000 \u0000 \u0000 \u0000 g\u0000 l\u0000 \u0000 3\u0000 \u0000 mathfrak {gl}_3\u0000 \u0000\u0000 in the Gelfand–Tsetlin base are calculated. In contrast to previous papers, the result is given as an explicit formula. To obtain the result, a realization of a representation in the space of functions on the group \u0000\u0000 \u0000 \u0000 G\u0000 \u0000 L\u0000 3\u0000 \u0000 \u0000 GL_3\u0000 \u0000\u0000 is used. The keystone fact that allows one to carry the calculation of Clebsh–Gordan coefficients is the theorem that says that functions corresponding to the Gelfand–Tsetlin base vectors can be expressed in terms of generalized hypergeometric functions.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42555184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A note on the centralizer of a subalgebra of the Steinberg algebra","authors":"R. Hazrat, Huanhuan Li","doi":"10.1090/spmj/1695","DOIUrl":"https://doi.org/10.1090/spmj/1695","url":null,"abstract":"<p>For an ample Hausdorff groupoid <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper G\">\u0000 <mml:semantics>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">G</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mathcal {G}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, and the Steinberg algebra <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A Subscript upper R Baseline left-parenthesis script upper G right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msub>\u0000 <mml:mi>A</mml:mi>\u0000 <mml:mi>R</mml:mi>\u0000 </mml:msub>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">G</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">A_R(mathcal {G})</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> with coefficients in the commutative ring <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\">\u0000 <mml:semantics>\u0000 <mml:mi>R</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">R</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> with unit, the centralizer is described for the subalgebra <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A Subscript upper R Baseline left-parenthesis upper U right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msub>\u0000 <mml:mi>A</mml:mi>\u0000 <mml:mi>R</mml:mi>\u0000 </mml:msub>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>U</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">A_R(U)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> with <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper U\">\u0000 <mml:semantics>\u0000 <mml:mi>U</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">U</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> an open closed invariant subset of the unit space of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper G\">\u0000 <mml:semantics>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">G</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mathcal {G}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. In particular, it is shown that the algebra of the interior of the isotropy is indeed the centralizer of the diagonal subalgebra of the Steinberg algebra. This will unify seve","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43792544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Summation method in an optimal control problem with delay","authors":"P. Barkhayev, Yu.Lyubarskii","doi":"10.1090/spmj/1759","DOIUrl":"https://doi.org/10.1090/spmj/1759","url":null,"abstract":"A summation procedure is described for the construction of the optimal solution in the null controllability problem for a differential equation with distributed delay.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43343749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structure of the maximal ideal space of ^{∞} on the countable disjoint union of open disks","authors":"A. Brudnyi","doi":"10.1090/SPMJ/1681","DOIUrl":"https://doi.org/10.1090/SPMJ/1681","url":null,"abstract":"","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83739357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Self-similarity and spectral theory: on the spectrum of substitutions","authors":"A. Bufetov, B. Solomyak","doi":"10.1090/spmj/1756","DOIUrl":"https://doi.org/10.1090/spmj/1756","url":null,"abstract":"This survey of the spectral properties of substitution dynamical systems is devoted to primitive aperiodic substitutions and associated dynamical systems: \u0000\u0000 \u0000 \u0000 Z\u0000 \u0000 mathbb {Z}\u0000 \u0000\u0000-actions and \u0000\u0000 \u0000 \u0000 R\u0000 \u0000 mathbb {R}\u0000 \u0000\u0000-actions, the latter viewed as tiling flows. The focus is on the continuous part of the spectrum. For \u0000\u0000 \u0000 \u0000 Z\u0000 \u0000 mathbb {Z}\u0000 \u0000\u0000-actions the maximal spectral type can be represented in terms of matrix Riesz products, whereas for tiling flows, the local dimension of the spectral measure is governed by the spectral cocycle. References are given to complete proofs and emphasize ideas and various links.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44659221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}