St Petersburg Mathematical Journal最新文献

筛选
英文 中文
Lernaean knots and band surgery 勒纳结和绑带手术
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2021-12-28 DOI: 10.1090/spmj/1687
Y. Belousov, M. Karev, A. Malyutin, A. Miller, E. Fominykh
{"title":"Lernaean knots and band surgery","authors":"Y. Belousov, M. Karev, A. Malyutin, A. Miller, E. Fominykh","doi":"10.1090/spmj/1687","DOIUrl":"https://doi.org/10.1090/spmj/1687","url":null,"abstract":"The paper is devoted to a line of the knot theory related to the conjecture on the additivity of the crossing number for knots under connected sum. A series of weak versions of this conjecture are proved. Many of these versions are formulated in terms of the band surgery graph also called the \u0000\u0000 \u0000 \u0000 H\u0000 (\u0000 2\u0000 )\u0000 \u0000 H(2)\u0000 \u0000\u0000-Gordian graph.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45402357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Symmetries of double ratios and an equation for Möbius structures Möbius结构的二重比对称性和一个方程
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2021-12-28 DOI: 10.1090/spmj/1688
S. Buyalo
{"title":"Symmetries of double ratios and an equation for Möbius structures","authors":"S. Buyalo","doi":"10.1090/spmj/1688","DOIUrl":"https://doi.org/10.1090/spmj/1688","url":null,"abstract":"<p>Orthogonal representations <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"eta Subscript n Baseline colon upper S Subscript n Baseline clockwise top semicircle arrow double-struck upper R Superscript upper N\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msub>\u0000 <mml:mi>η<!-- η --></mml:mi>\u0000 <mml:mi>n</mml:mi>\u0000 </mml:msub>\u0000 <mml:mo>:<!-- : --></mml:mo>\u0000 <mml:msub>\u0000 <mml:mi>S</mml:mi>\u0000 <mml:mi>n</mml:mi>\u0000 </mml:msub>\u0000 <mml:mo>↷<!-- ↷ --></mml:mo>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">R</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mi>N</mml:mi>\u0000 </mml:msup>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">eta _ncolon S_ncurvearrowright mathbb {R}^N</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of the symmetric groups <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S Subscript n\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mi>S</mml:mi>\u0000 <mml:mi>n</mml:mi>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">S_n</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n greater-than-or-equal-to 4\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>n</mml:mi>\u0000 <mml:mo>≥<!-- ≥ --></mml:mo>\u0000 <mml:mn>4</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">nge 4</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, with <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N equals n factorial slash 8\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>N</mml:mi>\u0000 <mml:mo>=</mml:mo>\u0000 <mml:mi>n</mml:mi>\u0000 <mml:mo>!</mml:mo>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo>/</mml:mo>\u0000 </mml:mrow>\u0000 <mml:mn>8</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">N=n!/8</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, emerging from symmetries of double ratios are treated. For <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n equals 5\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>n</mml:mi>\u0000 <mml:mo>=</mml:mo>\u0000 <mml:mn>5</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">n=5</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, the representation <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"eta 5\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mi>η<!-- η --></mml:mi>\u0000 <mml:mn>5</mml:mn>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">eta _5</mml:annotation>\u0000 </mml:semantics>\u0000</mml:","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49313998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Schrödinger operator with decreasing potential in a cylinder 圆柱中势递减的Schrödinger算子
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2021-12-28 DOI: 10.1090/spmj/1694
N. Filonov
{"title":"Schrödinger operator with decreasing potential in a cylinder","authors":"N. Filonov","doi":"10.1090/spmj/1694","DOIUrl":"https://doi.org/10.1090/spmj/1694","url":null,"abstract":"<p>The Schrödinger operator <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"negative normal upper Delta plus upper V left-parenthesis x comma y right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mo>−<!-- − --></mml:mo>\u0000 <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\u0000 <mml:mo>+</mml:mo>\u0000 <mml:mi>V</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>y</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">-Delta + V(x,y)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is considered in a cylinder <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript m Baseline times upper U\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">R</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mi>m</mml:mi>\u0000 </mml:msup>\u0000 <mml:mo>×<!-- × --></mml:mo>\u0000 <mml:mi>U</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbb {R}^m times U</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, where <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper U\">\u0000 <mml:semantics>\u0000 <mml:mi>U</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">U</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is a bounded domain in <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript d\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">R</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mi>d</mml:mi>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbb {R}^d</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. The spectrum of such an operator is studied under the assumption that the potential decreases in longitudinal variables, <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartAbsoluteValue upper V left-parenthesis x comma y right-parenthesis EndAbsoluteValue less-than-or-equal-to upper C mathematical left-angle x mathematical right-angle Superscript negative rho\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo stretchy=\"false\">|</mml:mo>\u0000 </mml:mrow>\u0000 <mml:mi>V</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>y</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo stretchy=\"false\">|</mml:mo>\u0000 </mml:mrow>\u0000 <mml:mo>≤<!-- ≤ --></mml:mo>\u0000 <mm","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48177839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
On the sharpness of assumptions in the Federer theorem 论费德勒定理中假设的尖锐性
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2021-12-28 DOI: 10.1090/spmj/1691
B. Makarov, A. Podkorytov
{"title":"On the sharpness of assumptions in the Federer theorem","authors":"B. Makarov, A. Podkorytov","doi":"10.1090/spmj/1691","DOIUrl":"https://doi.org/10.1090/spmj/1691","url":null,"abstract":"<p>The Federer theorem deals with the “massiveness” of the set of critical values for a <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t\">\u0000 <mml:semantics>\u0000 <mml:mi>t</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">t</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-smooth map acting from <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript m\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">R</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mi>m</mml:mi>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbb R^m</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> to <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript n\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">R</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mi>n</mml:mi>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbb R^n</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>: it claims that the Hausdorff <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\u0000 <mml:semantics>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-measure of this set is zero for certain <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\u0000 <mml:semantics>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. If <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n greater-than-or-equal-to m\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>n</mml:mi>\u0000 <mml:mo>≥<!-- ≥ --></mml:mo>\u0000 <mml:mi>m</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">nge m</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, it has long been known that the assumption of that theorem relating the parameters <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m comma n comma t comma p\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>m</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>n</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>t</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>p</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">m,n,t,p</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is sharp. Here it is shown by an example that this assumption is also sharp for <inline-formula content-typ","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45598824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clebsh–Gordan coefficients for the algebra 𝔤𝔩₃ and hypergeometric functions 代数<s:1>𝔩₃和超几何函数的Clebsh-Gordan系数
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2021-12-28 DOI: 10.1090/spmj/1686
D. Artamonov
{"title":"Clebsh–Gordan coefficients for the algebra 𝔤𝔩₃ and hypergeometric functions","authors":"D. Artamonov","doi":"10.1090/spmj/1686","DOIUrl":"https://doi.org/10.1090/spmj/1686","url":null,"abstract":"The Clebsh–Gordan coefficients for the Lie algebra \u0000\u0000 \u0000 \u0000 \u0000 g\u0000 l\u0000 \u0000 3\u0000 \u0000 mathfrak {gl}_3\u0000 \u0000\u0000 in the Gelfand–Tsetlin base are calculated. In contrast to previous papers, the result is given as an explicit formula. To obtain the result, a realization of a representation in the space of functions on the group \u0000\u0000 \u0000 \u0000 G\u0000 \u0000 L\u0000 3\u0000 \u0000 \u0000 GL_3\u0000 \u0000\u0000 is used. The keystone fact that allows one to carry the calculation of Clebsh–Gordan coefficients is the theorem that says that functions corresponding to the Gelfand–Tsetlin base vectors can be expressed in terms of generalized hypergeometric functions.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42555184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
A note on the centralizer of a subalgebra of the Steinberg algebra 关于Steinberg代数的一个子代数的扶正器的注记
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2021-12-28 DOI: 10.1090/spmj/1695
R. Hazrat, Huanhuan Li
{"title":"A note on the centralizer of a subalgebra of the Steinberg algebra","authors":"R. Hazrat, Huanhuan Li","doi":"10.1090/spmj/1695","DOIUrl":"https://doi.org/10.1090/spmj/1695","url":null,"abstract":"<p>For an ample Hausdorff groupoid <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper G\">\u0000 <mml:semantics>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">G</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mathcal {G}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, and the Steinberg algebra <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A Subscript upper R Baseline left-parenthesis script upper G right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msub>\u0000 <mml:mi>A</mml:mi>\u0000 <mml:mi>R</mml:mi>\u0000 </mml:msub>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">G</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">A_R(mathcal {G})</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> with coefficients in the commutative ring <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\">\u0000 <mml:semantics>\u0000 <mml:mi>R</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">R</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> with unit, the centralizer is described for the subalgebra <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A Subscript upper R Baseline left-parenthesis upper U right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msub>\u0000 <mml:mi>A</mml:mi>\u0000 <mml:mi>R</mml:mi>\u0000 </mml:msub>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>U</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">A_R(U)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> with <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper U\">\u0000 <mml:semantics>\u0000 <mml:mi>U</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">U</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> an open closed invariant subset of the unit space of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper G\">\u0000 <mml:semantics>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">G</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mathcal {G}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. In particular, it is shown that the algebra of the interior of the isotropy is indeed the centralizer of the diagonal subalgebra of the Steinberg algebra. This will unify seve","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43792544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Summation method in an optimal control problem with delay 一类时滞最优控制问题的求和方法
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2021-12-26 DOI: 10.1090/spmj/1759
P. Barkhayev, Yu.Lyubarskii
{"title":"Summation method in an optimal control problem with delay","authors":"P. Barkhayev, Yu.Lyubarskii","doi":"10.1090/spmj/1759","DOIUrl":"https://doi.org/10.1090/spmj/1759","url":null,"abstract":"A summation procedure is described for the construction of the optimal solution in the null controllability problem for a differential equation with distributed delay.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43343749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weighted Littlewood–Paley inequality for arbitrary rectangles in ℝ² 对任意矩形的加权Littlewood-Paley不等式
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2021-12-01 DOI: 10.1090/SPMJ/1680
Viacheslav Borovitskiy
{"title":"Weighted Littlewood–Paley inequality for arbitrary rectangles in ℝ²","authors":"Viacheslav Borovitskiy","doi":"10.1090/SPMJ/1680","DOIUrl":"https://doi.org/10.1090/SPMJ/1680","url":null,"abstract":"","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79911722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Structure of the maximal ideal space of ^{∞} on the countable disjoint union of open disks 开放盘可数不相交并上^{∞}最大理想空间的结构
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2021-12-01 DOI: 10.1090/SPMJ/1681
A. Brudnyi
{"title":"Structure of the maximal ideal space of ^{∞} on the countable disjoint union of open disks","authors":"A. Brudnyi","doi":"10.1090/SPMJ/1681","DOIUrl":"https://doi.org/10.1090/SPMJ/1681","url":null,"abstract":"","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83739357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Self-similarity and spectral theory: on the spectrum of substitutions 自相似与光谱理论:关于取代的光谱
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2021-11-01 DOI: 10.1090/spmj/1756
A. Bufetov, B. Solomyak
{"title":"Self-similarity and spectral theory: on the spectrum of substitutions","authors":"A. Bufetov, B. Solomyak","doi":"10.1090/spmj/1756","DOIUrl":"https://doi.org/10.1090/spmj/1756","url":null,"abstract":"This survey of the spectral properties of substitution dynamical systems is devoted to primitive aperiodic substitutions and associated dynamical systems: \u0000\u0000 \u0000 \u0000 Z\u0000 \u0000 mathbb {Z}\u0000 \u0000\u0000-actions and \u0000\u0000 \u0000 \u0000 R\u0000 \u0000 mathbb {R}\u0000 \u0000\u0000-actions, the latter viewed as tiling flows. The focus is on the continuous part of the spectrum. For \u0000\u0000 \u0000 \u0000 Z\u0000 \u0000 mathbb {Z}\u0000 \u0000\u0000-actions the maximal spectral type can be represented in terms of matrix Riesz products, whereas for tiling flows, the local dimension of the spectral measure is governed by the spectral cocycle. References are given to complete proofs and emphasize ideas and various links.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44659221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信