关于Steinberg代数的一个子代数的扶正器的注记

IF 0.7 4区 数学 Q2 MATHEMATICS
R. Hazrat, Huanhuan Li
{"title":"关于Steinberg代数的一个子代数的扶正器的注记","authors":"R. Hazrat, Huanhuan Li","doi":"10.1090/spmj/1695","DOIUrl":null,"url":null,"abstract":"<p>For an ample Hausdorff groupoid <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper G\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">G</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {G}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, and the Steinberg algebra <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A Subscript upper R Baseline left-parenthesis script upper G right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mi>R</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">G</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">A_R(\\mathcal {G})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with coefficients in the commutative ring <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\">\n <mml:semantics>\n <mml:mi>R</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">R</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with unit, the centralizer is described for the subalgebra <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A Subscript upper R Baseline left-parenthesis upper U right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mi>R</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>U</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">A_R(U)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper U\">\n <mml:semantics>\n <mml:mi>U</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">U</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> an open closed invariant subset of the unit space of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper G\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">G</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {G}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In particular, it is shown that the algebra of the interior of the isotropy is indeed the centralizer of the diagonal subalgebra of the Steinberg algebra. This will unify several results in the literature, and the corresponding results for Leavitt path algebras follow.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A note on the centralizer of a subalgebra of the Steinberg algebra\",\"authors\":\"R. Hazrat, Huanhuan Li\",\"doi\":\"10.1090/spmj/1695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For an ample Hausdorff groupoid <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper G\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">G</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {G}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, and the Steinberg algebra <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A Subscript upper R Baseline left-parenthesis script upper G right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>A</mml:mi>\\n <mml:mi>R</mml:mi>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">G</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">A_R(\\\\mathcal {G})</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> with coefficients in the commutative ring <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper R\\\">\\n <mml:semantics>\\n <mml:mi>R</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">R</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> with unit, the centralizer is described for the subalgebra <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A Subscript upper R Baseline left-parenthesis upper U right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>A</mml:mi>\\n <mml:mi>R</mml:mi>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>U</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">A_R(U)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> with <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper U\\\">\\n <mml:semantics>\\n <mml:mi>U</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">U</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> an open closed invariant subset of the unit space of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper G\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">G</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {G}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. In particular, it is shown that the algebra of the interior of the isotropy is indeed the centralizer of the diagonal subalgebra of the Steinberg algebra. This will unify several results in the literature, and the corresponding results for Leavitt path algebras follow.</p>\",\"PeriodicalId\":51162,\"journal\":{\"name\":\"St Petersburg Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"St Petersburg Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/spmj/1695\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1695","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

对于一个例子的Hausdorff群G \mathcal {G},以及在交换环R R中具有系数的Steinberg代数A R(G) A_R(\mathcal {G}),描述了子代数A R(U) A_R(U)具有U U是G \mathcal {G}的单位空间的开闭不变子集的正化器。特别地,证明了各向同性内部的代数确实是Steinberg代数对角线子代数的中心化器。这将统一文献中的几个结果,并给出莱维特路径代数的相应结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on the centralizer of a subalgebra of the Steinberg algebra

For an ample Hausdorff groupoid G \mathcal {G} , and the Steinberg algebra A R ( G ) A_R(\mathcal {G}) with coefficients in the commutative ring R R with unit, the centralizer is described for the subalgebra A R ( U ) A_R(U) with U U an open closed invariant subset of the unit space of  G \mathcal {G} . In particular, it is shown that the algebra of the interior of the isotropy is indeed the centralizer of the diagonal subalgebra of the Steinberg algebra. This will unify several results in the literature, and the corresponding results for Leavitt path algebras follow.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
52
审稿时长
>12 weeks
期刊介绍: This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信