St Petersburg Mathematical Journal最新文献

筛选
英文 中文
Complex WKB method for a system of two linear difference equations 两个线性差分方程组的复WKB方法
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2022-03-04 DOI: 10.1090/spmj/1706
A. Fedotov
{"title":"Complex WKB method for a system of two linear difference equations","authors":"A. Fedotov","doi":"10.1090/spmj/1706","DOIUrl":"https://doi.org/10.1090/spmj/1706","url":null,"abstract":"<p>Analytic solutions of the difference equation <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Psi left-parenthesis z plus h right-parenthesis equals upper M left-parenthesis z right-parenthesis normal upper Psi left-parenthesis z right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi mathvariant=\"normal\">Ψ<!-- Ψ --></mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>z</mml:mi>\u0000 <mml:mo>+</mml:mo>\u0000 <mml:mi>h</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mo>=</mml:mo>\u0000 <mml:mi>M</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>z</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mi mathvariant=\"normal\">Ψ<!-- Ψ --></mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>z</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">Psi (z+h)=M(z)Psi (z)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> are explored. Here <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"z\">\u0000 <mml:semantics>\u0000 <mml:mi>z</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">z</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is a complex variable, <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h greater-than 0\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>h</mml:mi>\u0000 <mml:mo>></mml:mo>\u0000 <mml:mn>0</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">h>0</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is a parameter, and <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\u0000 <mml:semantics>\u0000 <mml:mi>M</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is a given <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S upper L left-parenthesis 2 comma double-struck upper C right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>S</mml:mi>\u0000 <mml:mi>L</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mn>2</mml:mn>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">C</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">SL(2,mathbb {C})</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-valued function. It is assumed that <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\u0000 <mml:semantics>\u0000 <mml:mi>M</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\u0000 </mml:semanti","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44146957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scattering of a surface wave in a polygonal domain with impedance boundary 具有阻抗边界的多边形域中表面波的散射
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2022-03-04 DOI: 10.1090/spmj/1700
M. Lyalinov, N. Zhu
{"title":"Scattering of a surface wave in a polygonal domain with impedance boundary","authors":"M. Lyalinov, N. Zhu","doi":"10.1090/spmj/1700","DOIUrl":"https://doi.org/10.1090/spmj/1700","url":null,"abstract":"The two-dimensional (2D) domain under study is bounded from below by two semi-infinite and, between them, two finite straight lines; on each of the straight lines (segments), a usually individual impedance boundary condition is imposed. An incident surface wave, propagating from infinity along one semi-infinite segment of the polygonal domain, excites outgoing surface waves both on the same segment (a reflected wave) and on the second semi-infinite segment (a transmitted wave); in addition, a circular (cylindrical) outgoing wave will be generated in the far field. The scattered wave field satisfies the Helmholtz equation and the Robin (in other words, impedance) boundary conditions as well as some special integral form of the Sommerfeld radiation conditions. It is shown that a classical solution of the problem is unique. By the use of some known extension of the Sommerfeld–Malyuzhinets technique, the problem is reduced to functional Malyuzhinets equations and then to a system of integral equations of the second kind with integral operator depending on a characteristic parameter. The Fredholm property of the equations is established, which also leads to the existence of the solution for noncharacteristic values of the parameter. From the Sommerfeld integral representation of the solution, the far-field asymptotics is developed. Numerical results for the scattering diagram are also presented.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43902415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Steady state non-Newtonian flow in a thin tube structure: equation on the graph 薄管结构中的稳态非牛顿流:图上的方程
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2022-03-04 DOI: 10.1090/spmj/1702
G. Panasenko, K. Pileckas, B. Vernescu
{"title":"Steady state non-Newtonian flow in a thin tube structure: equation on the graph","authors":"G. Panasenko, K. Pileckas, B. Vernescu","doi":"10.1090/spmj/1702","DOIUrl":"https://doi.org/10.1090/spmj/1702","url":null,"abstract":"The dimension reduction for the viscous flows in thin tube structures leads to equations on the graph for the macroscopic pressure with Kirchhoff type junction conditions at the vertices. Nonlinear equations on the graph generated by the non-Newtonian rheology are treated here. The existence and uniqueness of a solution of this problem is proved. This solution describes the leading term of an asymptotic analysis of the stationary non-Newtonian fluid motion in a thin tube structure with no-slip boundary condition on the lateral boundary.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47948184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Eigenvalue asymptotics for polynomially compact pseudodifferential operators 多项式紧致伪微分算子的特征值渐近性
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2022-03-04 DOI: 10.1090/spmj/1703
G. Rozenblum
{"title":"Eigenvalue asymptotics for polynomially compact pseudodifferential operators","authors":"G. Rozenblum","doi":"10.1090/spmj/1703","DOIUrl":"https://doi.org/10.1090/spmj/1703","url":null,"abstract":"The asymptotics is found for eigenvalues of polynomially compact pseudodifferential operators of the zeroth order.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47204442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Short wave diffraction on a contour with a Hölder singularity of the curvature 具有Hölder曲率奇点的等值线上的短波衍射
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2022-03-04 DOI: 10.1090/spmj/1697
E. Zlobina, A. Kiselev
{"title":"Short wave diffraction on a contour with a Hölder singularity of the curvature","authors":"E. Zlobina, A. Kiselev","doi":"10.1090/spmj/1697","DOIUrl":"https://doi.org/10.1090/spmj/1697","url":null,"abstract":"Formulas are constructed for the short-wave asymptotics in the problem of diffraction of a plane wave on a contour with continuous curvature that is smooth everywhere except for one point near which it has a power-like behavior. The wave field is described in the boundary layers surrounding the singular point of the contour and the limit ray. An expression for the diffracted wave is found.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47807434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Asymptotics of the spectrum of the mixed boundary value problem for the Laplace operator in a thin spindle-shaped domain 细纺锤形域中拉普拉斯算子混合边值问题谱的渐近性
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2022-03-04 DOI: 10.1090/spmj/1701
S. Nazarov, J. Taskinen
{"title":"Asymptotics of the spectrum of the mixed boundary value problem for the Laplace operator in a thin spindle-shaped domain","authors":"S. Nazarov, J. Taskinen","doi":"10.1090/spmj/1701","DOIUrl":"https://doi.org/10.1090/spmj/1701","url":null,"abstract":"<p>The asymptotics is examined for solutions to the spectral problem for the Laplace operator in a <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\u0000 <mml:semantics>\u0000 <mml:mi>d</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-dimensional thin, of diameter <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis h right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>O</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>h</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">O(h)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, spindle-shaped domain <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega Superscript h\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\u0000 <mml:mi>h</mml:mi>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">Omega ^h</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> with the Dirichlet condition on small, of size <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h much-less-than 1\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>h</mml:mi>\u0000 <mml:mo>≪<!-- ≪ --></mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">hll 1</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, terminal zones <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma Subscript plus-or-minus Superscript h\">\u0000 <mml:semantics>\u0000 <mml:msubsup>\u0000 <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\u0000 <mml:mo>±<!-- ± --></mml:mo>\u0000 <mml:mi>h</mml:mi>\u0000 </mml:msubsup>\u0000 <mml:annotation encoding=\"application/x-tex\">Gamma ^h_pm</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> and the Neumann condition on the remaining part of the boundary <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"partial-differential normal upper Omega Superscript h\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi>\u0000 <mml:msup>\u0000 <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\u0000 <mml:mi>h</mml:mi>\u0000 </mml:msup>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">partial Omega ^h</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. In the limit as <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h right-arrow plus 0\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>h</mml:mi>\u0000 ","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43814998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global pointwise estimates of positive solutions to sublinear equations 次线性方程正解的全局点估计
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2022-03-04 DOI: 10.1090/spmj/1768
I. Verbitsky
{"title":"Global pointwise estimates of positive solutions to sublinear equations","authors":"I. Verbitsky","doi":"10.1090/spmj/1768","DOIUrl":"https://doi.org/10.1090/spmj/1768","url":null,"abstract":"<p>Bilateral pointwise estimates are provided for positive solutions <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u\">\u0000 <mml:semantics>\u0000 <mml:mi>u</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">u</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> to the sublinear integral equation <disp-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u equals bold upper G left-parenthesis sigma u Superscript q Baseline right-parenthesis plus f in normal upper Omega comma\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>u</mml:mi>\u0000 <mml:mo>=</mml:mo>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"bold\">G</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>σ<!-- σ --></mml:mi>\u0000 <mml:msup>\u0000 <mml:mi>u</mml:mi>\u0000 <mml:mi>q</mml:mi>\u0000 </mml:msup>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mo>+</mml:mo>\u0000 <mml:mi>f</mml:mi>\u0000 <mml:mspace width=\"1em\" />\u0000 <mml:mtext>in </mml:mtext>\u0000 <mml:mtext> </mml:mtext>\u0000 <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">begin{equation*} u = mathbf {G}(sigma u^q) + f quad text {in } Omega , end{equation*}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</disp-formula>\u0000 for <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than q greater-than 1\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mn>0</mml:mn>\u0000 <mml:mo>></mml:mo>\u0000 <mml:mi>q</mml:mi>\u0000 <mml:mo>></mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">0 > q > 1</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, where <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma greater-than-or-equal-to 0\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>σ<!-- σ --></mml:mi>\u0000 <mml:mo>≥<!-- ≥ --></mml:mo>\u0000 <mml:mn>0</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">sigma ge 0</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is a measurable function or a Radon measure, <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f greater-than-or-equal-to 0\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>f</mml:mi>\u0000 <mml:mo>≥<!-- ≥ --></mml:mo>\u0000 <mml:mn>0</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">f ge 0</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, and <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper G\">\u0000 <mml:semantics>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"bold\">G</mml:mi>\u0000 </mm","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47062526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Nonstandard Liouville tori and caustics in asymptotics in the form of Airy and Bessel functions for 2D standing coastal waves 二维驻波的Airy和Bessel函数形式的非标准Liouville复曲面和渐近线中的焦散
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2022-03-04 DOI: 10.1090/spmj/1696
A. Anikin, S. Dobrokhotov, V. Nazaikinskii, A. Tsvetkova
{"title":"Nonstandard Liouville tori and caustics in asymptotics in the form of Airy and Bessel functions for 2D standing coastal waves","authors":"A. Anikin, S. Dobrokhotov, V. Nazaikinskii, A. Tsvetkova","doi":"10.1090/spmj/1696","DOIUrl":"https://doi.org/10.1090/spmj/1696","url":null,"abstract":"<p>The spectral problem <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"minus mathematical left-angle nabla comma upper D left-parenthesis x right-parenthesis nabla psi mathematical right-angle equals lamda psi\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mo>−<!-- − --></mml:mo>\u0000 <mml:mo fence=\"false\" stretchy=\"false\">⟨<!-- ⟨ --></mml:mo>\u0000 <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>D</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi>\u0000 <mml:mi>ψ<!-- ψ --></mml:mi>\u0000 <mml:mo fence=\"false\" stretchy=\"false\">⟩<!-- ⟩ --></mml:mo>\u0000 <mml:mo>=</mml:mo>\u0000 <mml:mi>λ<!-- λ --></mml:mi>\u0000 <mml:mi>ψ<!-- ψ --></mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">-langle nabla ,D(x)nabla psi rangle = lambda psi</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> in a bounded two-dimensional domain <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega\">\u0000 <mml:semantics>\u0000 <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">Omega</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is considered, where <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D left-parenthesis x right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>D</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">D(x)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is a smooth function positive inside the domain and zero on the boundary whose gradient is different from zero on the boundary. This problem arises in the study of long waves trapped by the shore and by bottom irregularities. For its asymptotic solutions as <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda right-arrow normal infinity\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>λ<!-- λ --></mml:mi>\u0000 <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\u0000 <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">lambda rightarrow infty</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, explicit formulas are given when <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D left-parenthesis x right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>D</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45196115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Symbol length of classes in Milnor 𝐾-groups 符号长度类在米尔诺𝐾-groups
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2022-02-14 DOI: 10.1090/spmj/1775
Adam Chapman
{"title":"Symbol length of classes in Milnor 𝐾-groups","authors":"Adam Chapman","doi":"10.1090/spmj/1775","DOIUrl":"https://doi.org/10.1090/spmj/1775","url":null,"abstract":"<p>Given a field <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\u0000 <mml:semantics>\u0000 <mml:mi>F</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, a positive integer <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\">\u0000 <mml:semantics>\u0000 <mml:mi>m</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">m</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> and an integer <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n greater-than-or-equal-to 2\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>n</mml:mi>\u0000 <mml:mo>≥<!-- ≥ --></mml:mo>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">ngeq 2</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, it is proved that the symbol length of classes in Milnor’s <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\">\u0000 <mml:semantics>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">K</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-groups <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K Subscript n Baseline upper F slash 2 Superscript m Baseline upper K Subscript n Baseline upper F\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msub>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:mi>n</mml:mi>\u0000 </mml:msub>\u0000 <mml:mi>F</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo>/</mml:mo>\u0000 </mml:mrow>\u0000 <mml:msup>\u0000 <mml:mn>2</mml:mn>\u0000 <mml:mi>m</mml:mi>\u0000 </mml:msup>\u0000 <mml:msub>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:mi>n</mml:mi>\u0000 </mml:msub>\u0000 <mml:mi>F</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">K_n F/2^m K_n F</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> that are equivalent to single symbols under the embedding into <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K Subscript n Baseline upper F slash 2 Superscript m plus 1 Baseline upper K Subscript n Baseline upper F\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msub>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:mi>n</mml:mi>\u0000 </mml:msub>\u0000 <mml:mi>F</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo>/</mml:mo>\u0000 </mml:mrow>\u0000 <mml:msup>\u0000 <mml:mn>2</mml:mn>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi>m</mml:mi>\u0000 <mml:mo>+</mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:mrow>\u0000 </mml:msup>\u0000 <mml:msub>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:mi>n</mml:mi>\u0000 </mml:msub>\u0000 <mml:mi>F</mml:mi>\u0000 </mml:","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2022-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46291720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Solvability of a critical semilinear problem with the spectral Neumann fractional Laplacian 一个具有谱Neumann分数拉普拉斯算子的临界双线性问题的可解性
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2021-12-28 DOI: 10.1090/spmj/1693
N. Ustinov
{"title":"Solvability of a critical semilinear problem with the spectral Neumann fractional Laplacian","authors":"N. Ustinov","doi":"10.1090/spmj/1693","DOIUrl":"https://doi.org/10.1090/spmj/1693","url":null,"abstract":"<p>Sufficient conditions are provided for the existence of a ground state solution for the problem generated by the fractional Sobolev inequality in <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega element-of upper C squared colon\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\u0000 <mml:mo>∈<!-- ∈ --></mml:mo>\u0000 <mml:msup>\u0000 <mml:mi>C</mml:mi>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:msup>\u0000 <mml:mo>:</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">Omega in C^2:</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis negative normal upper Delta right-parenthesis Subscript upper S p Superscript s Baseline u left-parenthesis x right-parenthesis plus u left-parenthesis x right-parenthesis equals u Superscript 2 Super Subscript s Super Superscript asterisk Superscript minus 1 Baseline left-parenthesis x right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mo>−<!-- − --></mml:mo>\u0000 <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\u0000 <mml:msubsup>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi>S</mml:mi>\u0000 <mml:mi>p</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mi>s</mml:mi>\u0000 </mml:msubsup>\u0000 <mml:mi>u</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mo>+</mml:mo>\u0000 <mml:mi>u</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mo>=</mml:mo>\u0000 <mml:msup>\u0000 <mml:mi>u</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:msubsup>\u0000 <mml:mn>2</mml:mn>\u0000 <mml:mi>s</mml:mi>\u0000 <mml:mo>∗<!-- ∗ --></mml:mo>\u0000 </mml:msubsup>\u0000 <mml:mo>−<!-- − --></mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:mrow>\u0000 </mml:msup>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">(-Delta )_{Sp}^s u(x) + u(x) = u^{2^*_s-1}(x)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. Here <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis negative normal upper Delta right-parenthesis Subscript upper S p Superscript s\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mo>−<!-- − --></mml:mo>\u0000 <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\u0000 <mml:msubsup>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi>S</mml:mi>\u0000 ","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45556400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信