{"title":"Scattering of a surface wave in a polygonal domain with impedance boundary","authors":"M. Lyalinov, N. Zhu","doi":"10.1090/spmj/1700","DOIUrl":"https://doi.org/10.1090/spmj/1700","url":null,"abstract":"The two-dimensional (2D) domain under study is bounded from below by two semi-infinite and, between them, two finite straight lines; on each of the straight lines (segments), a usually individual impedance boundary condition is imposed. An incident surface wave, propagating from infinity along one semi-infinite segment of the polygonal domain, excites outgoing surface waves both on the same segment (a reflected wave) and on the second semi-infinite segment (a transmitted wave); in addition, a circular (cylindrical) outgoing wave will be generated in the far field. The scattered wave field satisfies the Helmholtz equation and the Robin (in other words, impedance) boundary conditions as well as some special integral form of the Sommerfeld radiation conditions. It is shown that a classical solution of the problem is unique. By the use of some known extension of the Sommerfeld–Malyuzhinets technique, the problem is reduced to functional Malyuzhinets equations and then to a system of integral equations of the second kind with integral operator depending on a characteristic parameter. The Fredholm property of the equations is established, which also leads to the existence of the solution for noncharacteristic values of the parameter. From the Sommerfeld integral representation of the solution, the far-field asymptotics is developed. Numerical results for the scattering diagram are also presented.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43902415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Steady state non-Newtonian flow in a thin tube structure: equation on the graph","authors":"G. Panasenko, K. Pileckas, B. Vernescu","doi":"10.1090/spmj/1702","DOIUrl":"https://doi.org/10.1090/spmj/1702","url":null,"abstract":"The dimension reduction for the viscous flows in thin tube structures leads to equations on the graph for the macroscopic pressure with Kirchhoff type junction conditions at the vertices. Nonlinear equations on the graph generated by the non-Newtonian rheology are treated here. The existence and uniqueness of a solution of this problem is proved. This solution describes the leading term of an asymptotic analysis of the stationary non-Newtonian fluid motion in a thin tube structure with no-slip boundary condition on the lateral boundary.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47948184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Eigenvalue asymptotics for polynomially compact pseudodifferential operators","authors":"G. Rozenblum","doi":"10.1090/spmj/1703","DOIUrl":"https://doi.org/10.1090/spmj/1703","url":null,"abstract":"The asymptotics is found for eigenvalues of polynomially compact pseudodifferential operators of the zeroth order.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47204442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Short wave diffraction on a contour with a Hölder singularity of the curvature","authors":"E. Zlobina, A. Kiselev","doi":"10.1090/spmj/1697","DOIUrl":"https://doi.org/10.1090/spmj/1697","url":null,"abstract":"Formulas are constructed for the short-wave asymptotics in the problem of diffraction of a plane wave on a contour with continuous curvature that is smooth everywhere except for one point near which it has a power-like behavior. The wave field is described in the boundary layers surrounding the singular point of the contour and the limit ray. An expression for the diffracted wave is found.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47807434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Anikin, S. Dobrokhotov, V. Nazaikinskii, A. Tsvetkova
{"title":"Nonstandard Liouville tori and caustics in asymptotics in the form of Airy and Bessel functions for 2D standing coastal waves","authors":"A. Anikin, S. Dobrokhotov, V. Nazaikinskii, A. Tsvetkova","doi":"10.1090/spmj/1696","DOIUrl":"https://doi.org/10.1090/spmj/1696","url":null,"abstract":"<p>The spectral problem <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"minus mathematical left-angle nabla comma upper D left-parenthesis x right-parenthesis nabla psi mathematical right-angle equals lamda psi\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mo>−<!-- − --></mml:mo>\u0000 <mml:mo fence=\"false\" stretchy=\"false\">⟨<!-- ⟨ --></mml:mo>\u0000 <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>D</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi>\u0000 <mml:mi>ψ<!-- ψ --></mml:mi>\u0000 <mml:mo fence=\"false\" stretchy=\"false\">⟩<!-- ⟩ --></mml:mo>\u0000 <mml:mo>=</mml:mo>\u0000 <mml:mi>λ<!-- λ --></mml:mi>\u0000 <mml:mi>ψ<!-- ψ --></mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">-langle nabla ,D(x)nabla psi rangle = lambda psi</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> in a bounded two-dimensional domain <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega\">\u0000 <mml:semantics>\u0000 <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">Omega</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is considered, where <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D left-parenthesis x right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>D</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">D(x)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is a smooth function positive inside the domain and zero on the boundary whose gradient is different from zero on the boundary. This problem arises in the study of long waves trapped by the shore and by bottom irregularities. For its asymptotic solutions as <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda right-arrow normal infinity\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>λ<!-- λ --></mml:mi>\u0000 <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\u0000 <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">lambda rightarrow infty</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, explicit formulas are given when <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D left-parenthesis x right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>D</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45196115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}