次线性方程正解的全局点估计

Pub Date : 2022-03-04 DOI:10.1090/spmj/1768
I. Verbitsky
{"title":"次线性方程正解的全局点估计","authors":"I. Verbitsky","doi":"10.1090/spmj/1768","DOIUrl":null,"url":null,"abstract":"<p>Bilateral pointwise estimates are provided for positive solutions <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u\">\n <mml:semantics>\n <mml:mi>u</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">u</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> to the sublinear integral equation <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u equals bold upper G left-parenthesis sigma u Superscript q Baseline right-parenthesis plus f in normal upper Omega comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>u</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">G</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:msup>\n <mml:mi>u</mml:mi>\n <mml:mi>q</mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>+</mml:mo>\n <mml:mi>f</mml:mi>\n <mml:mspace width=\"1em\" />\n <mml:mtext>in </mml:mtext>\n <mml:mtext> </mml:mtext>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} u = \\mathbf {G}(\\sigma u^q) + f \\quad \\text {in } \\ \\Omega , \\end{equation*}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</disp-formula>\n for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than q greater-than 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>0</mml:mn>\n <mml:mo>></mml:mo>\n <mml:mi>q</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">0 > q > 1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma greater-than-or-equal-to 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\sigma \\ge 0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a measurable function or a Radon measure, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f greater-than-or-equal-to 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>f</mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">f \\ge 0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper G\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">G</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbf {G}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the integral operator associated with a positive kernel <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega times normal upper Omega\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mo>×<!-- × --></mml:mo>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\Omega \\times \\Omega</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. The main results, which include the existence criteria and uniqueness of solutions, hold true for quasimetric, or quasimetrically modifiable kernels <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>\n\n<p>As a consequence, bilateral estimates are obtained, along with existence and uniqueness, for positive solutions <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u\">\n <mml:semantics>\n <mml:mi>u</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">u</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, possibly unbounded, to sublinear elliptic equations involving the fractional Laplacian, <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis negative normal upper Delta right-parenthesis Superscript StartFraction alpha Over 2 EndFraction Baseline u equals sigma u Superscript q Baseline plus mu in normal upper Omega comma u equals 0 in normal upper Omega Superscript c Baseline comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n <mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mfrac>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:mn>2</mml:mn>\n </mml:mfrac>\n </mml:mrow>\n </mml:msup>\n <mml:mi>u</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:msup>\n <mml:mi>u</mml:mi>\n <mml:mi>q</mml:mi>\n </mml:msup>\n <mml:mo>+</mml:mo>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mspace width=\"1em\" />\n <mml:mtext>in</mml:mtext>\n <mml:mspace width=\"1em\" />\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mspace width=\"1em\" />\n <mml:mi>u</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mspace width=\"1em\" />\n <mml:mtext>in</mml:mtext>\n <mml:mspace width=\"thinmathspace\" />\n <mml:mspace width=\"thinmathspace\" />\n <mml:msup>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mi>c</mml:mi>\n </mml:msup>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} (-\\Delta )^{\\frac {\\alpha }{2}} u = \\sigma u^q + \\mu \\quad \\text {in}\\quad \\Omega , \\quad u=0 \\quad \\text {in}\\,\\, \\Omega ^c, \\end{equation*}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</disp-formula>\n where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than q greater-than 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>0</mml:mn>\n <mml:mo>></mml:mo>\n <mml:mi>q</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">0>q>1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu comma sigma greater-than-or-equal-to 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mu , \\sigma \\ge 0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are measurable functions, or Radon measures, on a bounded uniform domain <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega subset-of double-struck upper R Superscript n\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\Omega \\subset \\mathbb {R}^n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than alpha less-than-or-equal-to 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>0</mml:mn>\n <mml:mo>></mml:mo>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">0 > \\alpha \\le 2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, or on the entire space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript n\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, a ball or half-space, for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than alpha greater-than n\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>0</mml:mn>\n <mml:mo>></mml:mo>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:mo>></mml:mo>\n <mml:mi>n</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">0 > \\alpha >n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Global pointwise estimates of positive solutions to sublinear equations\",\"authors\":\"I. Verbitsky\",\"doi\":\"10.1090/spmj/1768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bilateral pointwise estimates are provided for positive solutions <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"u\\\">\\n <mml:semantics>\\n <mml:mi>u</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">u</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> to the sublinear integral equation <disp-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"u equals bold upper G left-parenthesis sigma u Superscript q Baseline right-parenthesis plus f in normal upper Omega comma\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>u</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"bold\\\">G</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>σ<!-- σ --></mml:mi>\\n <mml:msup>\\n <mml:mi>u</mml:mi>\\n <mml:mi>q</mml:mi>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>+</mml:mo>\\n <mml:mi>f</mml:mi>\\n <mml:mspace width=\\\"1em\\\" />\\n <mml:mtext>in </mml:mtext>\\n <mml:mtext> </mml:mtext>\\n <mml:mi mathvariant=\\\"normal\\\">Ω<!-- Ω --></mml:mi>\\n <mml:mo>,</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\begin{equation*} u = \\\\mathbf {G}(\\\\sigma u^q) + f \\\\quad \\\\text {in } \\\\ \\\\Omega , \\\\end{equation*}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</disp-formula>\\n for <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"0 greater-than q greater-than 1\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mn>0</mml:mn>\\n <mml:mo>></mml:mo>\\n <mml:mi>q</mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">0 > q > 1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, where <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sigma greater-than-or-equal-to 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>σ<!-- σ --></mml:mi>\\n <mml:mo>≥<!-- ≥ --></mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\sigma \\\\ge 0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is a measurable function or a Radon measure, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"f greater-than-or-equal-to 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>f</mml:mi>\\n <mml:mo>≥<!-- ≥ --></mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">f \\\\ge 0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"bold upper G\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"bold\\\">G</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbf {G}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is the integral operator associated with a positive kernel <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\">\\n <mml:semantics>\\n <mml:mi>G</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Omega times normal upper Omega\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi mathvariant=\\\"normal\\\">Ω<!-- Ω --></mml:mi>\\n <mml:mo>×<!-- × --></mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">Ω<!-- Ω --></mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Omega \\\\times \\\\Omega</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. The main results, which include the existence criteria and uniqueness of solutions, hold true for quasimetric, or quasimetrically modifiable kernels <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\">\\n <mml:semantics>\\n <mml:mi>G</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>.</p>\\n\\n<p>As a consequence, bilateral estimates are obtained, along with existence and uniqueness, for positive solutions <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"u\\\">\\n <mml:semantics>\\n <mml:mi>u</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">u</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, possibly unbounded, to sublinear elliptic equations involving the fractional Laplacian, <disp-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis negative normal upper Delta right-parenthesis Superscript StartFraction alpha Over 2 EndFraction Baseline u equals sigma u Superscript q Baseline plus mu in normal upper Omega comma u equals 0 in normal upper Omega Superscript c Baseline comma\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">Δ<!-- Δ --></mml:mi>\\n <mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mfrac>\\n <mml:mi>α<!-- α --></mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:mfrac>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mi>u</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mi>σ<!-- σ --></mml:mi>\\n <mml:msup>\\n <mml:mi>u</mml:mi>\\n <mml:mi>q</mml:mi>\\n </mml:msup>\\n <mml:mo>+</mml:mo>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:mspace width=\\\"1em\\\" />\\n <mml:mtext>in</mml:mtext>\\n <mml:mspace width=\\\"1em\\\" />\\n <mml:mi mathvariant=\\\"normal\\\">Ω<!-- Ω --></mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mspace width=\\\"1em\\\" />\\n <mml:mi>u</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mn>0</mml:mn>\\n <mml:mspace width=\\\"1em\\\" />\\n <mml:mtext>in</mml:mtext>\\n <mml:mspace width=\\\"thinmathspace\\\" />\\n <mml:mspace width=\\\"thinmathspace\\\" />\\n <mml:msup>\\n <mml:mi mathvariant=\\\"normal\\\">Ω<!-- Ω --></mml:mi>\\n <mml:mi>c</mml:mi>\\n </mml:msup>\\n <mml:mo>,</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\begin{equation*} (-\\\\Delta )^{\\\\frac {\\\\alpha }{2}} u = \\\\sigma u^q + \\\\mu \\\\quad \\\\text {in}\\\\quad \\\\Omega , \\\\quad u=0 \\\\quad \\\\text {in}\\\\,\\\\, \\\\Omega ^c, \\\\end{equation*}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</disp-formula>\\n where <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"0 greater-than q greater-than 1\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mn>0</mml:mn>\\n <mml:mo>></mml:mo>\\n <mml:mi>q</mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">0>q>1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"mu comma sigma greater-than-or-equal-to 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>σ<!-- σ --></mml:mi>\\n <mml:mo>≥<!-- ≥ --></mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mu , \\\\sigma \\\\ge 0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> are measurable functions, or Radon measures, on a bounded uniform domain <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Omega subset-of double-struck upper R Superscript n\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi mathvariant=\\\"normal\\\">Ω<!-- Ω --></mml:mi>\\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:mi>n</mml:mi>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Omega \\\\subset \\\\mathbb {R}^n</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> for <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"0 greater-than alpha less-than-or-equal-to 2\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mn>0</mml:mn>\\n <mml:mo>></mml:mo>\\n <mml:mi>α<!-- α --></mml:mi>\\n <mml:mo>≤<!-- ≤ --></mml:mo>\\n <mml:mn>2</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">0 > \\\\alpha \\\\le 2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, or on the entire space <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper R Superscript n\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:mi>n</mml:mi>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {R}^n</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, a ball or half-space, for <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"0 greater-than alpha greater-than n\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mn>0</mml:mn>\\n <mml:mo>></mml:mo>\\n <mml:mi>α<!-- α --></mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mi>n</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">0 > \\\\alpha >n</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/spmj/1768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

给出了次线性积分方程u=G(σuq)+f的正解u u的双边逐点估计,{方程*}对于0>q>10>q=1,其中σ≥0\sigma\ge0是可测量函数或Radon测度,f≥0f\ge0,并且G\mathbf{G}是与Ω×。主要结果,包括解的存在性准则和唯一性,适用于拟度量或拟度量可修改核G G。因此,得到了涉及分数拉普拉斯算子的次线性椭圆方程的正解u u(可能是无界的)的双边估计以及存在性和唯一性,(−Δ)α2 u=σu q+μinΩ,u=0 inΩc,{begin{equation*}(-\Delta)^{\frac{\alpha}{2}}u={sigma u^q+\mu\quad\text{in}\fquad\Omega,\fquad u=0 \fquad\text{in}\,\,\ Omega^c,\ end{equation*}其中0>q>10>q=1,μ,σ≥0\mu,\ sigma\ge 0是可测量函数或Radon测度,在有界一致域Ω⊂Rn\Omega\subet\mathbb{R}^n上,对于0>α≤2 0>\alpha\le 2,或在整个空间Rn\mathb{R}^n上(球或半空间)上,对于0>α>n 0>\aalpha>n。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Global pointwise estimates of positive solutions to sublinear equations

Bilateral pointwise estimates are provided for positive solutions u u to the sublinear integral equation u = G ( σ u q ) + f in    Ω , \begin{equation*} u = \mathbf {G}(\sigma u^q) + f \quad \text {in } \ \Omega , \end{equation*} for 0 > q > 1 0 > q > 1 , where σ 0 \sigma \ge 0 is a measurable function or a Radon measure, f 0 f \ge 0 , and G \mathbf {G} is the integral operator associated with a positive kernel G G on Ω × Ω \Omega \times \Omega . The main results, which include the existence criteria and uniqueness of solutions, hold true for quasimetric, or quasimetrically modifiable kernels  G G .

As a consequence, bilateral estimates are obtained, along with existence and uniqueness, for positive solutions u u , possibly unbounded, to sublinear elliptic equations involving the fractional Laplacian, ( Δ ) α 2 u = σ u q + μ in Ω , u = 0 in Ω c , \begin{equation*} (-\Delta )^{\frac {\alpha }{2}} u = \sigma u^q + \mu \quad \text {in}\quad \Omega , \quad u=0 \quad \text {in}\,\, \Omega ^c, \end{equation*} where 0 > q > 1 0>q>1 , and μ , σ 0 \mu , \sigma \ge 0 are measurable functions, or Radon measures, on a bounded uniform domain Ω R n \Omega \subset \mathbb {R}^n for 0 > α 2 0 > \alpha \le 2 , or on the entire space R n \mathbb {R}^n , a ball or half-space, for 0 > α > n 0 > \alpha >n .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信