具有阻抗边界的多边形域中表面波的散射

Pub Date : 2022-03-04 DOI:10.1090/spmj/1700
M. Lyalinov, N. Zhu
{"title":"具有阻抗边界的多边形域中表面波的散射","authors":"M. Lyalinov, N. Zhu","doi":"10.1090/spmj/1700","DOIUrl":null,"url":null,"abstract":"The two-dimensional (2D) domain under study is bounded from below by two semi-infinite and, between them, two finite straight lines; on each of the straight lines (segments), a usually individual impedance boundary condition is imposed. An incident surface wave, propagating from infinity along one semi-infinite segment of the polygonal domain, excites outgoing surface waves both on the same segment (a reflected wave) and on the second semi-infinite segment (a transmitted wave); in addition, a circular (cylindrical) outgoing wave will be generated in the far field. The scattered wave field satisfies the Helmholtz equation and the Robin (in other words, impedance) boundary conditions as well as some special integral form of the Sommerfeld radiation conditions. It is shown that a classical solution of the problem is unique. By the use of some known extension of the Sommerfeld–Malyuzhinets technique, the problem is reduced to functional Malyuzhinets equations and then to a system of integral equations of the second kind with integral operator depending on a characteristic parameter. The Fredholm property of the equations is established, which also leads to the existence of the solution for noncharacteristic values of the parameter. From the Sommerfeld integral representation of the solution, the far-field asymptotics is developed. Numerical results for the scattering diagram are also presented.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Scattering of a surface wave in a polygonal domain with impedance boundary\",\"authors\":\"M. Lyalinov, N. Zhu\",\"doi\":\"10.1090/spmj/1700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The two-dimensional (2D) domain under study is bounded from below by two semi-infinite and, between them, two finite straight lines; on each of the straight lines (segments), a usually individual impedance boundary condition is imposed. An incident surface wave, propagating from infinity along one semi-infinite segment of the polygonal domain, excites outgoing surface waves both on the same segment (a reflected wave) and on the second semi-infinite segment (a transmitted wave); in addition, a circular (cylindrical) outgoing wave will be generated in the far field. The scattered wave field satisfies the Helmholtz equation and the Robin (in other words, impedance) boundary conditions as well as some special integral form of the Sommerfeld radiation conditions. It is shown that a classical solution of the problem is unique. By the use of some known extension of the Sommerfeld–Malyuzhinets technique, the problem is reduced to functional Malyuzhinets equations and then to a system of integral equations of the second kind with integral operator depending on a characteristic parameter. The Fredholm property of the equations is established, which also leads to the existence of the solution for noncharacteristic values of the parameter. From the Sommerfeld integral representation of the solution, the far-field asymptotics is developed. Numerical results for the scattering diagram are also presented.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/spmj/1700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

所研究的二维(2D)域从下面由两条半无限的直线和它们之间的两条有限直线界定;在每条直线(段)上,通常施加单独的阻抗边界条件。从无穷远处沿着多边形域的一个半无限段传播的入射表面波在同一段上(反射波)和在第二半无限段上(透射波)激发出射表面波;此外,在远场中将产生圆形(圆柱形)出射波。散射波场满足亥姆霍兹方程和Robin(换言之,阻抗)边界条件以及Sommerfeld辐射条件的一些特殊积分形式。结果表明,该问题的经典解是唯一的。通过使用Sommerfeld–Malyuzhinets技术的一些已知扩展,将问题简化为泛函Malyuzhines方程,然后简化为第二类积分方程组,该方程组具有取决于特征参数的积分算子。建立了方程的Fredholm性质,这也导致了参数的非特征值的解的存在性。从解的Sommerfeld积分表示,发展了远场渐近性。文中还给出了散射图的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Scattering of a surface wave in a polygonal domain with impedance boundary
The two-dimensional (2D) domain under study is bounded from below by two semi-infinite and, between them, two finite straight lines; on each of the straight lines (segments), a usually individual impedance boundary condition is imposed. An incident surface wave, propagating from infinity along one semi-infinite segment of the polygonal domain, excites outgoing surface waves both on the same segment (a reflected wave) and on the second semi-infinite segment (a transmitted wave); in addition, a circular (cylindrical) outgoing wave will be generated in the far field. The scattered wave field satisfies the Helmholtz equation and the Robin (in other words, impedance) boundary conditions as well as some special integral form of the Sommerfeld radiation conditions. It is shown that a classical solution of the problem is unique. By the use of some known extension of the Sommerfeld–Malyuzhinets technique, the problem is reduced to functional Malyuzhinets equations and then to a system of integral equations of the second kind with integral operator depending on a characteristic parameter. The Fredholm property of the equations is established, which also leads to the existence of the solution for noncharacteristic values of the parameter. From the Sommerfeld integral representation of the solution, the far-field asymptotics is developed. Numerical results for the scattering diagram are also presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信