{"title":"Global pointwise estimates of positive solutions to sublinear equations","authors":"I. Verbitsky","doi":"10.1090/spmj/1768","DOIUrl":null,"url":null,"abstract":"<p>Bilateral pointwise estimates are provided for positive solutions <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u\">\n <mml:semantics>\n <mml:mi>u</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">u</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> to the sublinear integral equation <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u equals bold upper G left-parenthesis sigma u Superscript q Baseline right-parenthesis plus f in normal upper Omega comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>u</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">G</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:msup>\n <mml:mi>u</mml:mi>\n <mml:mi>q</mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>+</mml:mo>\n <mml:mi>f</mml:mi>\n <mml:mspace width=\"1em\" />\n <mml:mtext>in </mml:mtext>\n <mml:mtext> </mml:mtext>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} u = \\mathbf {G}(\\sigma u^q) + f \\quad \\text {in } \\ \\Omega , \\end{equation*}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</disp-formula>\n for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than q greater-than 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>0</mml:mn>\n <mml:mo>></mml:mo>\n <mml:mi>q</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">0 > q > 1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma greater-than-or-equal-to 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\sigma \\ge 0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a measurable function or a Radon measure, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f greater-than-or-equal-to 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>f</mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">f \\ge 0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper G\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">G</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbf {G}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the integral operator associated with a positive kernel <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega times normal upper Omega\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mo>×<!-- × --></mml:mo>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\Omega \\times \\Omega</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. The main results, which include the existence criteria and uniqueness of solutions, hold true for quasimetric, or quasimetrically modifiable kernels <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>\n\n<p>As a consequence, bilateral estimates are obtained, along with existence and uniqueness, for positive solutions <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u\">\n <mml:semantics>\n <mml:mi>u</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">u</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, possibly unbounded, to sublinear elliptic equations involving the fractional Laplacian, <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis negative normal upper Delta right-parenthesis Superscript StartFraction alpha Over 2 EndFraction Baseline u equals sigma u Superscript q Baseline plus mu in normal upper Omega comma u equals 0 in normal upper Omega Superscript c Baseline comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n <mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mfrac>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:mn>2</mml:mn>\n </mml:mfrac>\n </mml:mrow>\n </mml:msup>\n <mml:mi>u</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:msup>\n <mml:mi>u</mml:mi>\n <mml:mi>q</mml:mi>\n </mml:msup>\n <mml:mo>+</mml:mo>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mspace width=\"1em\" />\n <mml:mtext>in</mml:mtext>\n <mml:mspace width=\"1em\" />\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mspace width=\"1em\" />\n <mml:mi>u</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mspace width=\"1em\" />\n <mml:mtext>in</mml:mtext>\n <mml:mspace width=\"thinmathspace\" />\n <mml:mspace width=\"thinmathspace\" />\n <mml:msup>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mi>c</mml:mi>\n </mml:msup>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} (-\\Delta )^{\\frac {\\alpha }{2}} u = \\sigma u^q + \\mu \\quad \\text {in}\\quad \\Omega , \\quad u=0 \\quad \\text {in}\\,\\, \\Omega ^c, \\end{equation*}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</disp-formula>\n where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than q greater-than 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>0</mml:mn>\n <mml:mo>></mml:mo>\n <mml:mi>q</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">0>q>1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu comma sigma greater-than-or-equal-to 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mu , \\sigma \\ge 0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are measurable functions, or Radon measures, on a bounded uniform domain <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega subset-of double-struck upper R Superscript n\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\Omega \\subset \\mathbb {R}^n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than alpha less-than-or-equal-to 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>0</mml:mn>\n <mml:mo>></mml:mo>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">0 > \\alpha \\le 2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, or on the entire space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript n\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, a ball or half-space, for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than alpha greater-than n\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>0</mml:mn>\n <mml:mo>></mml:mo>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:mo>></mml:mo>\n <mml:mi>n</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">0 > \\alpha >n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1768","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5
Abstract
Bilateral pointwise estimates are provided for positive solutions uu to the sublinear integral equation u=G(σuq)+fin Ω,\begin{equation*} u = \mathbf {G}(\sigma u^q) + f \quad \text {in } \ \Omega , \end{equation*}
for 0>q>10 > q > 1, where σ≥0\sigma \ge 0 is a measurable function or a Radon measure, f≥0f \ge 0, and G\mathbf {G} is the integral operator associated with a positive kernel GG on Ω×Ω\Omega \times \Omega. The main results, which include the existence criteria and uniqueness of solutions, hold true for quasimetric, or quasimetrically modifiable kernels GG.
As a consequence, bilateral estimates are obtained, along with existence and uniqueness, for positive solutions uu, possibly unbounded, to sublinear elliptic equations involving the fractional Laplacian, (−Δ)α2u=σuq+μinΩ,u=0inΩc,\begin{equation*} (-\Delta )^{\frac {\alpha }{2}} u = \sigma u^q + \mu \quad \text {in}\quad \Omega , \quad u=0 \quad \text {in}\,\, \Omega ^c, \end{equation*}
where 0>q>10>q>1, and μ,σ≥0\mu , \sigma \ge 0 are measurable functions, or Radon measures, on a bounded uniform domain Ω⊂Rn\Omega \subset \mathbb {R}^n for 0>α≤20 > \alpha \le 2, or on the entire space Rn\mathbb {R}^n, a ball or half-space, for 0>α>n0 > \alpha >n.
期刊介绍:
This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.