A. Anikin, S. Dobrokhotov, V. Nazaikinskii, A. Tsvetkova
{"title":"Nonstandard Liouville tori and caustics in asymptotics in the form of Airy and Bessel functions for 2D standing coastal waves","authors":"A. Anikin, S. Dobrokhotov, V. Nazaikinskii, A. Tsvetkova","doi":"10.1090/spmj/1696","DOIUrl":null,"url":null,"abstract":"<p>The spectral problem <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"minus mathematical left-angle nabla comma upper D left-parenthesis x right-parenthesis nabla psi mathematical right-angle equals lamda psi\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">⟨<!-- ⟨ --></mml:mo>\n <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>D</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi>\n <mml:mi>ψ<!-- ψ --></mml:mi>\n <mml:mo fence=\"false\" stretchy=\"false\">⟩<!-- ⟩ --></mml:mo>\n <mml:mo>=</mml:mo>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mi>ψ<!-- ψ --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">-\\langle \\nabla ,D(x)\\nabla \\psi \\rangle = \\lambda \\psi</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in a bounded two-dimensional domain <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Omega</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is considered, where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D left-parenthesis x right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>D</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">D(x)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a smooth function positive inside the domain and zero on the boundary whose gradient is different from zero on the boundary. This problem arises in the study of long waves trapped by the shore and by bottom irregularities. For its asymptotic solutions as <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda right-arrow normal infinity\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\lambda \\rightarrow \\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, explicit formulas are given when <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D left-parenthesis x right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>D</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">D(x)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> has a special form that guarantees the complete integrability of the Hamiltonian system corresponding to the Hamiltonian <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H left-parenthesis x comma p right-parenthesis equals upper D left-parenthesis x right-parenthesis p squared\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>H</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>p</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:mi>D</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:msup>\n <mml:mi>p</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">H(x,p)=D(x)p^2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Since the problem is degenerate, the relevant Liouville tori are not in the standard phase space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T Superscript asterisk Baseline normal upper Omega\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>T</mml:mi>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msup>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">T^*\\Omega</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, but in the “extended” phase space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper Phi superset-of upper T Superscript asterisk Baseline normal upper Omega\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">Φ<!-- Φ --></mml:mi>\n </mml:mrow>\n <mml:mo>⊃<!-- ⊃ --></mml:mo>\n <mml:msup>\n <mml:mi>T</mml:mi>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msup>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbf {\\Phi }\\supset T^*\\Omega</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, while their restrictions to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T Superscript asterisk Baseline normal upper Omega\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>T</mml:mi>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msup>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">T^*\\Omega</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are not compact and “go to infinity” with respect to momenta near the boundary of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Omega</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. As a result, nonstandard caustics emerge, formed by the boundary or its part, near which asymptotic eigenfunctions are expressed in terms of a Bessel function of composite argument. Standard caustics (within the domain) may also appear, which yield Airy functions in the asymptotics.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1696","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The spectral problem −⟨∇,D(x)∇ψ⟩=λψ-\langle \nabla ,D(x)\nabla \psi \rangle = \lambda \psi in a bounded two-dimensional domain Ω\Omega is considered, where D(x)D(x) is a smooth function positive inside the domain and zero on the boundary whose gradient is different from zero on the boundary. This problem arises in the study of long waves trapped by the shore and by bottom irregularities. For its asymptotic solutions as λ→∞\lambda \rightarrow \infty, explicit formulas are given when D(x)D(x) has a special form that guarantees the complete integrability of the Hamiltonian system corresponding to the Hamiltonian H(x,p)=D(x)p2H(x,p)=D(x)p^2. Since the problem is degenerate, the relevant Liouville tori are not in the standard phase space T∗ΩT^*\Omega, but in the “extended” phase space Φ⊃T∗Ω\mathbf {\Phi }\supset T^*\Omega, while their restrictions to T∗ΩT^*\Omega are not compact and “go to infinity” with respect to momenta near the boundary of Ω\Omega. As a result, nonstandard caustics emerge, formed by the boundary or its part, near which asymptotic eigenfunctions are expressed in terms of a Bessel function of composite argument. Standard caustics (within the domain) may also appear, which yield Airy functions in the asymptotics.
期刊介绍:
This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.