{"title":"Asymptotics of the spectrum of the mixed boundary value problem for the Laplace operator in a thin spindle-shaped domain","authors":"S. Nazarov, J. Taskinen","doi":"10.1090/spmj/1701","DOIUrl":null,"url":null,"abstract":"<p>The asymptotics is examined for solutions to the spectral problem for the Laplace operator in a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\n <mml:semantics>\n <mml:mi>d</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-dimensional thin, of diameter <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis h right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>O</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>h</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">O(h)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, spindle-shaped domain <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega Superscript h\">\n <mml:semantics>\n <mml:msup>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mi>h</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\Omega ^h</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with the Dirichlet condition on small, of size <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h much-less-than 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>h</mml:mi>\n <mml:mo>≪<!-- ≪ --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">h\\ll 1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, terminal zones <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma Subscript plus-or-minus Superscript h\">\n <mml:semantics>\n <mml:msubsup>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mo>±<!-- ± --></mml:mo>\n <mml:mi>h</mml:mi>\n </mml:msubsup>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma ^h_\\pm</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and the Neumann condition on the remaining part of the boundary <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"partial-differential normal upper Omega Superscript h\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi>\n <mml:msup>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mi>h</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\partial \\Omega ^h</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In the limit as <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h right-arrow plus 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>h</mml:mi>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mo>+</mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">h\\rightarrow +0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, an ordinary differential equation on the axis <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis negative 1 comma 1 right-parenthesis contains-as-member z\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>∋<!-- ∋ --></mml:mo>\n <mml:mi>z</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(-1,1)\\ni z</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of the spindle arises with a coefficient degenerating at the points <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"z equals plus-or-minus 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>z</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mo>±<!-- ± --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">z=\\pm 1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and moreover, without any boundary condition because the requirement on the boundedness of eigenfunctions makes the limit spectral problem well-posed. Error estimates are derived for the one-dimensional model but in the case of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d equals 3\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>d</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>3</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">d=3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> it is necessary to construct boundary layers near the sets <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma Subscript plus-or-minus Superscript h\">\n <mml:semantics>\n <mml:msubsup>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mo>±<!-- ± --></mml:mo>\n <mml:mi>h</mml:mi>\n </mml:msubsup>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma ^h_\\pm</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and in the case of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d equals 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>d</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">d=2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> it is necessary to deal with selfadjoint extensions of the differential operator. The extension parameters depend linearly on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ln h\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>ln</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mi>h</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\ln h</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> so that its eigenvalues are analytic functions in the variable <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 slash StartAbsoluteValue ln h EndAbsoluteValue\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>ln</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mi>h</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">1/|\\ln h|</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. As a result, in all dimensions the one-dimensional model gets the power-law accuracy <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis h Superscript delta Super Subscript d Superscript Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>O</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>h</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msub>\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:mi>d</mml:mi>\n </mml:msub>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">O(h^{\\delta _d})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with an exponent <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"delta Subscript d Baseline greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:mi>d</mml:mi>\n </mml:msub>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\delta _d>0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. First (the smallest) eigenvalues, positive in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega Superscript h\">\n <mml:semantics>\n <mml:msup>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mi>h</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\Omega ^h</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and null in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis negative 1 comma 1 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(-1,1)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, require individual treatment. Also, infinite asymptotic series are discussed, as well as the static problem (without the spectral parameter) and related shapes of thin domains.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1701","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The asymptotics is examined for solutions to the spectral problem for the Laplace operator in a dd-dimensional thin, of diameter O(h)O(h), spindle-shaped domain Ωh\Omega ^h with the Dirichlet condition on small, of size h≪1h\ll 1, terminal zones Γ±h\Gamma ^h_\pm and the Neumann condition on the remaining part of the boundary ∂Ωh\partial \Omega ^h. In the limit as h→+0h\rightarrow +0, an ordinary differential equation on the axis (−1,1)∋z(-1,1)\ni z of the spindle arises with a coefficient degenerating at the points z=±1z=\pm 1 and moreover, without any boundary condition because the requirement on the boundedness of eigenfunctions makes the limit spectral problem well-posed. Error estimates are derived for the one-dimensional model but in the case of d=3d=3 it is necessary to construct boundary layers near the sets Γ±h\Gamma ^h_\pm and in the case of d=2d=2 it is necessary to deal with selfadjoint extensions of the differential operator. The extension parameters depend linearly on lnh\ln h so that its eigenvalues are analytic functions in the variable 1/|lnh|1/|\ln h|. As a result, in all dimensions the one-dimensional model gets the power-law accuracy O(hδd)O(h^{\delta _d}) with an exponent δd>0\delta _d>0. First (the smallest) eigenvalues, positive in Ωh\Omega ^h and null in (−1,1)(-1,1), require individual treatment. Also, infinite asymptotic series are discussed, as well as the static problem (without the spectral parameter) and related shapes of thin domains.
期刊介绍:
This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.