Asymptotics of the spectrum of the mixed boundary value problem for the Laplace operator in a thin spindle-shaped domain

IF 0.7 4区 数学 Q2 MATHEMATICS
S. Nazarov, J. Taskinen
{"title":"Asymptotics of the spectrum of the mixed boundary value problem for the Laplace operator in a thin spindle-shaped domain","authors":"S. Nazarov, J. Taskinen","doi":"10.1090/spmj/1701","DOIUrl":null,"url":null,"abstract":"<p>The asymptotics is examined for solutions to the spectral problem for the Laplace operator in a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\n <mml:semantics>\n <mml:mi>d</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-dimensional thin, of diameter <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis h right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>O</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>h</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">O(h)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, spindle-shaped domain <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega Superscript h\">\n <mml:semantics>\n <mml:msup>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mi>h</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\Omega ^h</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with the Dirichlet condition on small, of size <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h much-less-than 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>h</mml:mi>\n <mml:mo>≪<!-- ≪ --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">h\\ll 1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, terminal zones <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma Subscript plus-or-minus Superscript h\">\n <mml:semantics>\n <mml:msubsup>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mo>±<!-- ± --></mml:mo>\n <mml:mi>h</mml:mi>\n </mml:msubsup>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma ^h_\\pm</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and the Neumann condition on the remaining part of the boundary <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"partial-differential normal upper Omega Superscript h\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi>\n <mml:msup>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mi>h</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\partial \\Omega ^h</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In the limit as <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h right-arrow plus 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>h</mml:mi>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mo>+</mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">h\\rightarrow +0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, an ordinary differential equation on the axis <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis negative 1 comma 1 right-parenthesis contains-as-member z\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>∋<!-- ∋ --></mml:mo>\n <mml:mi>z</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(-1,1)\\ni z</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of the spindle arises with a coefficient degenerating at the points <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"z equals plus-or-minus 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>z</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mo>±<!-- ± --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">z=\\pm 1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and moreover, without any boundary condition because the requirement on the boundedness of eigenfunctions makes the limit spectral problem well-posed. Error estimates are derived for the one-dimensional model but in the case of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d equals 3\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>d</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>3</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">d=3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> it is necessary to construct boundary layers near the sets <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma Subscript plus-or-minus Superscript h\">\n <mml:semantics>\n <mml:msubsup>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mo>±<!-- ± --></mml:mo>\n <mml:mi>h</mml:mi>\n </mml:msubsup>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma ^h_\\pm</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and in the case of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d equals 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>d</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">d=2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> it is necessary to deal with selfadjoint extensions of the differential operator. The extension parameters depend linearly on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ln h\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>ln</mml:mi>\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\n <mml:mi>h</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\ln h</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> so that its eigenvalues are analytic functions in the variable <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 slash StartAbsoluteValue ln h EndAbsoluteValue\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>ln</mml:mi>\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\n <mml:mi>h</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">1/|\\ln h|</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. As a result, in all dimensions the one-dimensional model gets the power-law accuracy <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis h Superscript delta Super Subscript d Superscript Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>O</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>h</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msub>\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:mi>d</mml:mi>\n </mml:msub>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">O(h^{\\delta _d})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with an exponent <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"delta Subscript d Baseline greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:mi>d</mml:mi>\n </mml:msub>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\delta _d>0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. First (the smallest) eigenvalues, positive in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega Superscript h\">\n <mml:semantics>\n <mml:msup>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mi>h</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\Omega ^h</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and null in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis negative 1 comma 1 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(-1,1)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, require individual treatment. Also, infinite asymptotic series are discussed, as well as the static problem (without the spectral parameter) and related shapes of thin domains.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1701","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The asymptotics is examined for solutions to the spectral problem for the Laplace operator in a d d -dimensional thin, of diameter O ( h ) O(h) , spindle-shaped domain Ω h \Omega ^h with the Dirichlet condition on small, of size h 1 h\ll 1 , terminal zones Γ ± h \Gamma ^h_\pm and the Neumann condition on the remaining part of the boundary Ω h \partial \Omega ^h . In the limit as h + 0 h\rightarrow +0 , an ordinary differential equation on the axis ( 1 , 1 ) z (-1,1)\ni z of the spindle arises with a coefficient degenerating at the points z = ± 1 z=\pm 1 and moreover, without any boundary condition because the requirement on the boundedness of eigenfunctions makes the limit spectral problem well-posed. Error estimates are derived for the one-dimensional model but in the case of d = 3 d=3 it is necessary to construct boundary layers near the sets Γ ± h \Gamma ^h_\pm and in the case of d = 2 d=2 it is necessary to deal with selfadjoint extensions of the differential operator. The extension parameters depend linearly on ln h \ln h so that its eigenvalues are analytic functions in the variable 1 / | ln h | 1/|\ln h| . As a result, in all dimensions the one-dimensional model gets the power-law accuracy O ( h δ d ) O(h^{\delta _d}) with an exponent δ d > 0 \delta _d>0 . First (the smallest) eigenvalues, positive in Ω h \Omega ^h and null in  ( 1 , 1 ) (-1,1) , require individual treatment. Also, infinite asymptotic series are discussed, as well as the static problem (without the spectral parameter) and related shapes of thin domains.

细纺锤形域中拉普拉斯算子混合边值问题谱的渐近性
研究了拉普拉斯算子在直径为O(h)O(h,终端区Γ±h\Gamma^h\pm和边界剩余部分上的Neumann条件。在极限为h时→ + 0h\rightarrow+0,在主轴的轴(−1,1)∋z(-1,1)\ni z上产生了一个常微分方程,其系数在点z=±1 z=\pm 1处退化,此外,没有任何边界条件,因为对本征函数有界性的要求使得极限谱问题具有良好的适定性。导出了一维模型的误差估计,但在d=3 d=3的情况下,有必要在Γ±h\Gamma^h\pm集合附近构造边界层,在d=2 d=2的情况下有必要处理微分算子的自伴随扩展。扩展参数线性依赖于ln⁡ 使得其特征值是变量1/|ln中的解析函数⁡ h|1/|\ln h|。因此,在所有维度上,一维模型都得到幂律精度O(hδd)O(h^{\delta _d}),指数δd>0\delta _d>0。第一个(最小的)特征值,在Ωh\Omega^h中为正,在(−1,1)(-1,1)中为零,需要单独处理。此外,还讨论了无限渐近级数,以及薄域的静态问题(不含谱参数)和相关形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
52
审稿时长
>12 weeks
期刊介绍: This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信