{"title":"具有Hölder曲率奇点的等值线上的短波衍射","authors":"E. Zlobina, A. Kiselev","doi":"10.1090/spmj/1697","DOIUrl":null,"url":null,"abstract":"Formulas are constructed for the short-wave asymptotics in the problem of diffraction of a plane wave on a contour with continuous curvature that is smooth everywhere except for one point near which it has a power-like behavior. The wave field is described in the boundary layers surrounding the singular point of the contour and the limit ray. An expression for the diffracted wave is found.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Short wave diffraction on a contour with a Hölder singularity of the curvature\",\"authors\":\"E. Zlobina, A. Kiselev\",\"doi\":\"10.1090/spmj/1697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Formulas are constructed for the short-wave asymptotics in the problem of diffraction of a plane wave on a contour with continuous curvature that is smooth everywhere except for one point near which it has a power-like behavior. The wave field is described in the boundary layers surrounding the singular point of the contour and the limit ray. An expression for the diffracted wave is found.\",\"PeriodicalId\":51162,\"journal\":{\"name\":\"St Petersburg Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"St Petersburg Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/spmj/1697\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1697","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Short wave diffraction on a contour with a Hölder singularity of the curvature
Formulas are constructed for the short-wave asymptotics in the problem of diffraction of a plane wave on a contour with continuous curvature that is smooth everywhere except for one point near which it has a power-like behavior. The wave field is described in the boundary layers surrounding the singular point of the contour and the limit ray. An expression for the diffracted wave is found.
期刊介绍:
This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.