S. Nazarov, J. Taskinen
求助PDF
{"title":"细纺锤形域中拉普拉斯算子混合边值问题谱的渐近性","authors":"S. Nazarov, J. Taskinen","doi":"10.1090/spmj/1701","DOIUrl":null,"url":null,"abstract":"<p>The asymptotics is examined for solutions to the spectral problem for the Laplace operator in a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\n <mml:semantics>\n <mml:mi>d</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-dimensional thin, of diameter <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis h right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>O</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>h</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">O(h)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, spindle-shaped domain <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega Superscript h\">\n <mml:semantics>\n <mml:msup>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mi>h</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\Omega ^h</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with the Dirichlet condition on small, of size <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h much-less-than 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>h</mml:mi>\n <mml:mo>≪<!-- ≪ --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">h\\ll 1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, terminal zones <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma Subscript plus-or-minus Superscript h\">\n <mml:semantics>\n <mml:msubsup>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mo>±<!-- ± --></mml:mo>\n <mml:mi>h</mml:mi>\n </mml:msubsup>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma ^h_\\pm</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and the Neumann condition on the remaining part of the boundary <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"partial-differential normal upper Omega Superscript h\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi>\n <mml:msup>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mi>h</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\partial \\Omega ^h</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In the limit as <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h right-arrow plus 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>h</mml:mi>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mo>+</mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">h\\rightarrow +0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, an ordinary differential equation on the axis <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis negative 1 comma 1 right-parenthesis contains-as-member z\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>∋<!-- ∋ --></mml:mo>\n <mml:mi>z</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(-1,1)\\ni z</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of the spindle arises with a coefficient degenerating at the points <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"z equals plus-or-minus 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>z</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mo>±<!-- ± --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">z=\\pm 1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and moreover, without any boundary condition because the requirement on the boundedness of eigenfunctions makes the limit spectral problem well-posed. Error estimates are derived for the one-dimensional model but in the case of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d equals 3\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>d</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>3</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">d=3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> it is necessary to construct boundary layers near the sets <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma Subscript plus-or-minus Superscript h\">\n <mml:semantics>\n <mml:msubsup>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mo>±<!-- ± --></mml:mo>\n <mml:mi>h</mml:mi>\n </mml:msubsup>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma ^h_\\pm</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and in the case of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d equals 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>d</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">d=2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> it is necessary to deal with selfadjoint extensions of the differential operator. The extension parameters depend linearly on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ln h\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>ln</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mi>h</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\ln h</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> so that its eigenvalues are analytic functions in the variable <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 slash StartAbsoluteValue ln h EndAbsoluteValue\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>ln</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mi>h</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">1/|\\ln h|</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. As a result, in all dimensions the one-dimensional model gets the power-law accuracy <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis h Superscript delta Super Subscript d Superscript Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>O</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>h</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msub>\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:mi>d</mml:mi>\n </mml:msub>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">O(h^{\\delta _d})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with an exponent <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"delta Subscript d Baseline greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:mi>d</mml:mi>\n </mml:msub>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\delta _d>0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. First (the smallest) eigenvalues, positive in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega Superscript h\">\n <mml:semantics>\n <mml:msup>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mi>h</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\Omega ^h</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and null in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis negative 1 comma 1 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(-1,1)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, require individual treatment. Also, infinite asymptotic series are discussed, as well as the static problem (without the spectral parameter) and related shapes of thin domains.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotics of the spectrum of the mixed boundary value problem for the Laplace operator in a thin spindle-shaped domain\",\"authors\":\"S. Nazarov, J. Taskinen\",\"doi\":\"10.1090/spmj/1701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The asymptotics is examined for solutions to the spectral problem for the Laplace operator in a <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d\\\">\\n <mml:semantics>\\n <mml:mi>d</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">d</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-dimensional thin, of diameter <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper O left-parenthesis h right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>O</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>h</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">O(h)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, spindle-shaped domain <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Omega Superscript h\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi mathvariant=\\\"normal\\\">Ω<!-- Ω --></mml:mi>\\n <mml:mi>h</mml:mi>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Omega ^h</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> with the Dirichlet condition on small, of size <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"h much-less-than 1\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>h</mml:mi>\\n <mml:mo>≪<!-- ≪ --></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">h\\\\ll 1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, terminal zones <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma Subscript plus-or-minus Superscript h\\\">\\n <mml:semantics>\\n <mml:msubsup>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n <mml:mo>±<!-- ± --></mml:mo>\\n <mml:mi>h</mml:mi>\\n </mml:msubsup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma ^h_\\\\pm</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and the Neumann condition on the remaining part of the boundary <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"partial-differential normal upper Omega Superscript h\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi mathvariant=\\\"normal\\\">∂<!-- ∂ --></mml:mi>\\n <mml:msup>\\n <mml:mi mathvariant=\\\"normal\\\">Ω<!-- Ω --></mml:mi>\\n <mml:mi>h</mml:mi>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\partial \\\\Omega ^h</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. In the limit as <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"h right-arrow plus 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>h</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">→<!-- → --></mml:mo>\\n <mml:mo>+</mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">h\\\\rightarrow +0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, an ordinary differential equation on the axis <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis negative 1 comma 1 right-parenthesis contains-as-member z\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>∋<!-- ∋ --></mml:mo>\\n <mml:mi>z</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">(-1,1)\\\\ni z</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of the spindle arises with a coefficient degenerating at the points <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"z equals plus-or-minus 1\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>z</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mo>±<!-- ± --></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">z=\\\\pm 1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and moreover, without any boundary condition because the requirement on the boundedness of eigenfunctions makes the limit spectral problem well-posed. Error estimates are derived for the one-dimensional model but in the case of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d equals 3\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>d</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mn>3</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">d=3</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> it is necessary to construct boundary layers near the sets <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma Subscript plus-or-minus Superscript h\\\">\\n <mml:semantics>\\n <mml:msubsup>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n <mml:mo>±<!-- ± --></mml:mo>\\n <mml:mi>h</mml:mi>\\n </mml:msubsup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma ^h_\\\\pm</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and in the case of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d equals 2\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>d</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mn>2</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">d=2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> it is necessary to deal with selfadjoint extensions of the differential operator. The extension parameters depend linearly on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"ln h\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>ln</mml:mi>\\n <mml:mo><!-- --></mml:mo>\\n <mml:mi>h</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\ln h</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> so that its eigenvalues are analytic functions in the variable <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"1 slash StartAbsoluteValue ln h EndAbsoluteValue\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mn>1</mml:mn>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">|</mml:mo>\\n </mml:mrow>\\n <mml:mi>ln</mml:mi>\\n <mml:mo><!-- --></mml:mo>\\n <mml:mi>h</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">|</mml:mo>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">1/|\\\\ln h|</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. As a result, in all dimensions the one-dimensional model gets the power-law accuracy <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper O left-parenthesis h Superscript delta Super Subscript d Superscript Baseline right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>O</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msup>\\n <mml:mi>h</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:msub>\\n <mml:mi>δ<!-- δ --></mml:mi>\\n <mml:mi>d</mml:mi>\\n </mml:msub>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">O(h^{\\\\delta _d})</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> with an exponent <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"delta Subscript d Baseline greater-than 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>δ<!-- δ --></mml:mi>\\n <mml:mi>d</mml:mi>\\n </mml:msub>\\n <mml:mo>></mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\delta _d>0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. First (the smallest) eigenvalues, positive in <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Omega Superscript h\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi mathvariant=\\\"normal\\\">Ω<!-- Ω --></mml:mi>\\n <mml:mi>h</mml:mi>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Omega ^h</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and null in <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis negative 1 comma 1 right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">(-1,1)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, require individual treatment. Also, infinite asymptotic series are discussed, as well as the static problem (without the spectral parameter) and related shapes of thin domains.</p>\",\"PeriodicalId\":51162,\"journal\":{\"name\":\"St Petersburg Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"St Petersburg Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/spmj/1701\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1701","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用