A. Fedotov
求助PDF
{"title":"两个线性差分方程组的复WKB方法","authors":"A. Fedotov","doi":"10.1090/spmj/1706","DOIUrl":null,"url":null,"abstract":"<p>Analytic solutions of the difference equation <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Psi left-parenthesis z plus h right-parenthesis equals upper M left-parenthesis z right-parenthesis normal upper Psi left-parenthesis z right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">Ψ<!-- Ψ --></mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>z</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mi>h</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:mi>M</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>z</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mi mathvariant=\"normal\">Ψ<!-- Ψ --></mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>z</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\Psi (z+h)=M(z)\\Psi (z)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are explored. Here <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"z\">\n <mml:semantics>\n <mml:mi>z</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">z</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a complex variable, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>h</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">h>0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a parameter, and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a given <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S upper L left-parenthesis 2 comma double-struck upper C right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>S</mml:mi>\n <mml:mi>L</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">C</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">SL(2,\\mathbb {C})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-valued function. It is assumed that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> either is analytic in a bounded domain or is a trigonometric polynomial. A simple method to derive the asymptotics of solutions as <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h right-arrow 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>h</mml:mi>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">h\\to 0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is described.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex WKB method for a system of two linear difference equations\",\"authors\":\"A. Fedotov\",\"doi\":\"10.1090/spmj/1706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Analytic solutions of the difference equation <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Psi left-parenthesis z plus h right-parenthesis equals upper M left-parenthesis z right-parenthesis normal upper Psi left-parenthesis z right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi mathvariant=\\\"normal\\\">Ψ<!-- Ψ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>z</mml:mi>\\n <mml:mo>+</mml:mo>\\n <mml:mi>h</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>=</mml:mo>\\n <mml:mi>M</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>z</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">Ψ<!-- Ψ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>z</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Psi (z+h)=M(z)\\\\Psi (z)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> are explored. Here <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"z\\\">\\n <mml:semantics>\\n <mml:mi>z</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">z</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is a complex variable, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"h greater-than 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>h</mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">h>0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is a parameter, and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\">\\n <mml:semantics>\\n <mml:mi>M</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is a given <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper S upper L left-parenthesis 2 comma double-struck upper C right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>S</mml:mi>\\n <mml:mi>L</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>2</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">C</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">SL(2,\\\\mathbb {C})</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-valued function. It is assumed that <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\">\\n <mml:semantics>\\n <mml:mi>M</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> either is analytic in a bounded domain or is a trigonometric polynomial. A simple method to derive the asymptotics of solutions as <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"h right-arrow 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>h</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">→<!-- → --></mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">h\\\\to 0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is described.</p>\",\"PeriodicalId\":51162,\"journal\":{\"name\":\"St Petersburg Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"St Petersburg Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/spmj/1706\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1706","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用