Solvability of a critical semilinear problem with the spectral Neumann fractional Laplacian

Pub Date : 2021-12-28 DOI:10.1090/spmj/1693
N. Ustinov
{"title":"Solvability of a critical semilinear problem with the spectral Neumann fractional Laplacian","authors":"N. Ustinov","doi":"10.1090/spmj/1693","DOIUrl":null,"url":null,"abstract":"<p>Sufficient conditions are provided for the existence of a ground state solution for the problem generated by the fractional Sobolev inequality in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega element-of upper C squared colon\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:mo>:</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\Omega \\in C^2:</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis negative normal upper Delta right-parenthesis Subscript upper S p Superscript s Baseline u left-parenthesis x right-parenthesis plus u left-parenthesis x right-parenthesis equals u Superscript 2 Super Subscript s Super Superscript asterisk Superscript minus 1 Baseline left-parenthesis x right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n <mml:msubsup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>S</mml:mi>\n <mml:mi>p</mml:mi>\n </mml:mrow>\n <mml:mi>s</mml:mi>\n </mml:msubsup>\n <mml:mi>u</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>+</mml:mo>\n <mml:mi>u</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:msup>\n <mml:mi>u</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msubsup>\n <mml:mn>2</mml:mn>\n <mml:mi>s</mml:mi>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msubsup>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(-\\Delta )_{Sp}^s u(x) + u(x) = u^{2^*_s-1}(x)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Here <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis negative normal upper Delta right-parenthesis Subscript upper S p Superscript s\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n <mml:msubsup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>S</mml:mi>\n <mml:mi>p</mml:mi>\n </mml:mrow>\n <mml:mi>s</mml:mi>\n </mml:msubsup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(-\\Delta )_{Sp}^s</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> stands for the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"s\">\n <mml:semantics>\n <mml:mi>s</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">s</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>th power of the conventional Neumann Laplacian in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega double-subset double-struck upper R Superscript n\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mo>⋐<!-- ⋐ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\Omega \\Subset \\mathbb {R}^n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n greater-than-or-equal-to 3\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>n</mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>3</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">n \\geq 3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"s element-of left-parenthesis 0 comma 1 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>s</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">s \\in (0, 1)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 Subscript s Superscript asterisk Baseline equals 2 n slash left-parenthesis n minus 2 s right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msubsup>\n <mml:mn>2</mml:mn>\n <mml:mi>s</mml:mi>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msubsup>\n <mml:mo>=</mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mi>n</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mi>s</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">2^*_s = 2n/(n-2s)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. For the local case where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"s equals 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>s</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">s = 1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, corresponding results were obtained earlier for the Neumann Laplacian and Neumann <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-Laplacian operators.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Sufficient conditions are provided for the existence of a ground state solution for the problem generated by the fractional Sobolev inequality in Ω C 2 : \Omega \in C^2: ( Δ ) S p s u ( x ) + u ( x ) = u 2 s 1 ( x ) (-\Delta )_{Sp}^s u(x) + u(x) = u^{2^*_s-1}(x) . Here ( Δ ) S p s (-\Delta )_{Sp}^s stands for the s s th power of the conventional Neumann Laplacian in Ω R n \Omega \Subset \mathbb {R}^n , n 3 n \geq 3 , s ( 0 , 1 ) s \in (0, 1) , 2 s = 2 n / ( n 2 s ) 2^*_s = 2n/(n-2s) . For the local case where s = 1 s = 1 , corresponding results were obtained earlier for the Neumann Laplacian and Neumann p p -Laplacian operators.

分享
查看原文
一个具有谱Neumann分数拉普拉斯算子的临界双线性问题的可解性
给出了Ω∈C2:\Omega\中的分数阶Sobolev不等式在C^2中产生的问题基态解存在的充分条件:(−Δ)S p S u(x)+u(x=u 2 s*−1(x)(-\Δ)_{Sp}^s u(x)+u(x)=u ^{2^*_s-1}(x)。这里(−Δ)S p S(-\Delta)_{Sp}^S代表传统Neumann拉普拉斯算子在Ω中的S次幂,s∈(0,1)s\在(0,l)中,2s*=2 n/(n−2s)2^*_s=2n/(n-2s)。对于s=1 s=1的局部情况,Neumann-拉普拉斯算子和Neumann-p-拉普拉斯算子的相应结果早些时候得到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信