代数𝔩₃和超几何函数的Clebsh-Gordan系数

IF 0.7 4区 数学 Q2 MATHEMATICS
D. Artamonov
{"title":"代数<s:1>𝔩₃和超几何函数的Clebsh-Gordan系数","authors":"D. Artamonov","doi":"10.1090/spmj/1686","DOIUrl":null,"url":null,"abstract":"The Clebsh–Gordan coefficients for the Lie algebra \n\n \n \n \n g\n l\n \n 3\n \n \\mathfrak {gl}_3\n \n\n in the Gelfand–Tsetlin base are calculated. In contrast to previous papers, the result is given as an explicit formula. To obtain the result, a realization of a representation in the space of functions on the group \n\n \n \n G\n \n L\n 3\n \n \n GL_3\n \n\n is used. The keystone fact that allows one to carry the calculation of Clebsh–Gordan coefficients is the theorem that says that functions corresponding to the Gelfand–Tsetlin base vectors can be expressed in terms of generalized hypergeometric functions.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Clebsh–Gordan coefficients for the algebra 𝔤𝔩₃ and hypergeometric functions\",\"authors\":\"D. Artamonov\",\"doi\":\"10.1090/spmj/1686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Clebsh–Gordan coefficients for the Lie algebra \\n\\n \\n \\n \\n g\\n l\\n \\n 3\\n \\n \\\\mathfrak {gl}_3\\n \\n\\n in the Gelfand–Tsetlin base are calculated. In contrast to previous papers, the result is given as an explicit formula. To obtain the result, a realization of a representation in the space of functions on the group \\n\\n \\n \\n G\\n \\n L\\n 3\\n \\n \\n GL_3\\n \\n\\n is used. The keystone fact that allows one to carry the calculation of Clebsh–Gordan coefficients is the theorem that says that functions corresponding to the Gelfand–Tsetlin base vectors can be expressed in terms of generalized hypergeometric functions.\",\"PeriodicalId\":51162,\"journal\":{\"name\":\"St Petersburg Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"St Petersburg Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/spmj/1686\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1686","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

李代数gl3\mathfrak的Clebsh–Gordan系数{gl}_3计算了Gelfand–Tsetlin基中的。与以前的论文相比,结果是作为一个显式公式给出的。为了得到这一结果,使用了在群GL_3上函数空间中的一个表示的实现。允许计算Clebsh–Gordan系数的关键事实是定理,该定理表明,与Gelfand–Tsetlin基向量对应的函数可以用广义超几何函数表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clebsh–Gordan coefficients for the algebra 𝔤𝔩₃ and hypergeometric functions
The Clebsh–Gordan coefficients for the Lie algebra g l 3 \mathfrak {gl}_3 in the Gelfand–Tsetlin base are calculated. In contrast to previous papers, the result is given as an explicit formula. To obtain the result, a realization of a representation in the space of functions on the group G L 3 GL_3 is used. The keystone fact that allows one to carry the calculation of Clebsh–Gordan coefficients is the theorem that says that functions corresponding to the Gelfand–Tsetlin base vectors can be expressed in terms of generalized hypergeometric functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
52
审稿时长
>12 weeks
期刊介绍: This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信