Self-similarity and spectral theory: on the spectrum of substitutions

IF 0.7 4区 数学 Q2 MATHEMATICS
A. Bufetov, B. Solomyak
{"title":"Self-similarity and spectral theory: on the spectrum of substitutions","authors":"A. Bufetov, B. Solomyak","doi":"10.1090/spmj/1756","DOIUrl":null,"url":null,"abstract":"This survey of the spectral properties of substitution dynamical systems is devoted to primitive aperiodic substitutions and associated dynamical systems: \n\n \n \n Z\n \n \\mathbb {Z}\n \n\n-actions and \n\n \n \n R\n \n \\mathbb {R}\n \n\n-actions, the latter viewed as tiling flows. The focus is on the continuous part of the spectrum. For \n\n \n \n Z\n \n \\mathbb {Z}\n \n\n-actions the maximal spectral type can be represented in terms of matrix Riesz products, whereas for tiling flows, the local dimension of the spectral measure is governed by the spectral cocycle. References are given to complete proofs and emphasize ideas and various links.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1756","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

This survey of the spectral properties of substitution dynamical systems is devoted to primitive aperiodic substitutions and associated dynamical systems: Z \mathbb {Z} -actions and R \mathbb {R} -actions, the latter viewed as tiling flows. The focus is on the continuous part of the spectrum. For Z \mathbb {Z} -actions the maximal spectral type can be represented in terms of matrix Riesz products, whereas for tiling flows, the local dimension of the spectral measure is governed by the spectral cocycle. References are given to complete proofs and emphasize ideas and various links.
自相似与光谱理论:关于取代的光谱
本文对置换动力系统的谱性质进行了综述,主要研究了原始非周期置换和相关动力系统:Z\mathbb{Z}-作用和R\mathbb{R}-动作,后者被视为平铺流。重点是频谱的连续部分。对于Z\mathbb{Z}-作用,最大谱类型可以用矩阵Riesz乘积表示,而对于平铺流,谱测度的局部维数由谱共循环控制。参考文献提供了完整的证明,并强调了思想和各个环节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
52
审稿时长
>12 weeks
期刊介绍: This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信