可微的函数模块和方程𝑔𝑟𝑎𝑑(𝑤)=𝖬𝗀𝗋𝖺𝖽(𝗏)

IF 0.7 4区 数学 Q2 MATHEMATICS
K. Ciosmak
{"title":"可微的函数模块和方程𝑔𝑟𝑎𝑑(𝑤)=𝖬𝗀𝗋𝖺𝖽(𝗏)","authors":"K. Ciosmak","doi":"10.1090/spmj/1754","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\n <mml:semantics>\n <mml:mi>A</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a finite-dimensional, commutative algebra over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> or <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">C</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {C}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. The notion of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\n <mml:semantics>\n <mml:mi>A</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-differentiable functions on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\n <mml:semantics>\n <mml:mi>A</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is extended to develop a theory of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\n <mml:semantics>\n <mml:mi>A</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-differentiable functions on finitely generated <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\n <mml:semantics>\n <mml:mi>A</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-modules. Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper U\">\n <mml:semantics>\n <mml:mi>U</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">U</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be an open, bounded and convex subset of such a module. An explicit formula is given for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\n <mml:semantics>\n <mml:mi>A</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-differentiable functions on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper U\">\n <mml:semantics>\n <mml:mi>U</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">U</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of prescribed class of differentiability in terms of real or complex differentiable functions, in the case when <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\n <mml:semantics>\n <mml:mi>A</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is singly generated and the module is arbitrary and in the case when <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\n <mml:semantics>\n <mml:mi>A</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is arbitrary and the module is free. Certain components of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\n <mml:semantics>\n <mml:mi>A</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-differentiable function are proved to have higher differentiability than the function itself.</p>\n\n<p>Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sans-serif upper M\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"sans-serif\">M</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathsf {M}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a constant, square matrix. By using the formula mentioned above, a complete description of solutions of the equation <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g r a d left-parenthesis w right-parenthesis equals sans-serif upper M g r a d left-parenthesis v right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>grad</mml:mi>\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>w</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"sans-serif\">M</mml:mi>\n </mml:mrow>\n <mml:mi>grad</mml:mi>\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>v</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\operatorname {grad}(w)=\\mathsf {M}\\operatorname {grad}(v)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is given.</p>\n\n<p>A boundary value problem for generalized Laplace equations <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sans-serif upper M nabla squared v equals nabla squared v sans-serif upper M Superscript intercalate\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"sans-serif\">M</mml:mi>\n </mml:mrow>\n <mml:msup>\n <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:mi>v</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:msup>\n <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:mi>v</mml:mi>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"sans-serif\">M</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>⊺<!-- ⊺ --></mml:mo>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathsf {M}\\nabla ^2 v=\\nabla ^2v \\mathsf {M}^{\\intercal }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is formulated and it is shown that for given boundary data there exists a unique solution, for which a formula is provided.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differentiable functions on modules and the equation 𝑔𝑟𝑎𝑑(𝑤)=𝖬𝗀𝗋𝖺𝖽(𝗏)\",\"authors\":\"K. Ciosmak\",\"doi\":\"10.1090/spmj/1754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A\\\">\\n <mml:semantics>\\n <mml:mi>A</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">A</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> be a finite-dimensional, commutative algebra over <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper R\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {R}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> or <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper C\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">C</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {C}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. The notion of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A\\\">\\n <mml:semantics>\\n <mml:mi>A</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">A</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-differentiable functions on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A\\\">\\n <mml:semantics>\\n <mml:mi>A</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">A</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is extended to develop a theory of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A\\\">\\n <mml:semantics>\\n <mml:mi>A</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">A</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-differentiable functions on finitely generated <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A\\\">\\n <mml:semantics>\\n <mml:mi>A</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">A</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-modules. Let <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper U\\\">\\n <mml:semantics>\\n <mml:mi>U</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">U</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> be an open, bounded and convex subset of such a module. An explicit formula is given for <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A\\\">\\n <mml:semantics>\\n <mml:mi>A</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">A</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-differentiable functions on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper U\\\">\\n <mml:semantics>\\n <mml:mi>U</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">U</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of prescribed class of differentiability in terms of real or complex differentiable functions, in the case when <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A\\\">\\n <mml:semantics>\\n <mml:mi>A</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">A</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is singly generated and the module is arbitrary and in the case when <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A\\\">\\n <mml:semantics>\\n <mml:mi>A</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">A</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is arbitrary and the module is free. Certain components of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A\\\">\\n <mml:semantics>\\n <mml:mi>A</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">A</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-differentiable function are proved to have higher differentiability than the function itself.</p>\\n\\n<p>Let <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sans-serif upper M\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"sans-serif\\\">M</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathsf {M}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> be a constant, square matrix. By using the formula mentioned above, a complete description of solutions of the equation <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g r a d left-parenthesis w right-parenthesis equals sans-serif upper M g r a d left-parenthesis v right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>grad</mml:mi>\\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>w</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>=</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"sans-serif\\\">M</mml:mi>\\n </mml:mrow>\\n <mml:mi>grad</mml:mi>\\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>v</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\operatorname {grad}(w)=\\\\mathsf {M}\\\\operatorname {grad}(v)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is given.</p>\\n\\n<p>A boundary value problem for generalized Laplace equations <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sans-serif upper M nabla squared v equals nabla squared v sans-serif upper M Superscript intercalate\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"sans-serif\\\">M</mml:mi>\\n </mml:mrow>\\n <mml:msup>\\n <mml:mi mathvariant=\\\"normal\\\">∇<!-- ∇ --></mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msup>\\n <mml:mi>v</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:msup>\\n <mml:mi mathvariant=\\\"normal\\\">∇<!-- ∇ --></mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msup>\\n <mml:mi>v</mml:mi>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"sans-serif\\\">M</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>⊺<!-- ⊺ --></mml:mo>\\n </mml:mrow>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathsf {M}\\\\nabla ^2 v=\\\\nabla ^2v \\\\mathsf {M}^{\\\\intercal }</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is formulated and it is shown that for given boundary data there exists a unique solution, for which a formula is provided.</p>\",\"PeriodicalId\":51162,\"journal\":{\"name\":\"St Petersburg Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"St Petersburg Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/spmj/1754\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1754","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设A A是R\mathbb{R}或C\mathbb{C}上的有限维交换代数。推广了A上的A—可微函数的概念,发展了有限生成A—A—模上A—可微分函数的理论。设U U是这样一个模的开、有界和凸子集。在A是单生成且模是任意的情况下,以及在A是任意的且模是自由的情况下给出了关于实或复可微函数的规定类可微性的U U上的A-可微函数。证明了A-可微函数的某些组成部分具有比函数本身更高的可微性。设M\mathsf{M}是一个常数平方矩阵。通过使用上述公式,方程grad的解的完整描述⁡ (w)=M梯度⁡ 给出了(v)\ operatorname{grad}(w)=\mathsf{M}\ operator name{grad}。建立了广义拉普拉斯方程的一个边值问题,证明了对于给定的边界数据存在唯一解,为此提供了一个公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differentiable functions on modules and the equation 𝑔𝑟𝑎𝑑(𝑤)=𝖬𝗀𝗋𝖺𝖽(𝗏)

Let A A be a finite-dimensional, commutative algebra over R \mathbb {R} or C \mathbb {C} . The notion of A A -differentiable functions on A A is extended to develop a theory of A A -differentiable functions on finitely generated A A -modules. Let U U be an open, bounded and convex subset of such a module. An explicit formula is given for A A -differentiable functions on U U of prescribed class of differentiability in terms of real or complex differentiable functions, in the case when A A is singly generated and the module is arbitrary and in the case when A A is arbitrary and the module is free. Certain components of A A -differentiable function are proved to have higher differentiability than the function itself.

Let M \mathsf {M} be a constant, square matrix. By using the formula mentioned above, a complete description of solutions of the equation grad ( w ) = M grad ( v ) \operatorname {grad}(w)=\mathsf {M}\operatorname {grad}(v) is given.

A boundary value problem for generalized Laplace equations M 2 v = 2 v M \mathsf {M}\nabla ^2 v=\nabla ^2v \mathsf {M}^{\intercal } is formulated and it is shown that for given boundary data there exists a unique solution, for which a formula is provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
52
审稿时长
>12 weeks
期刊介绍: This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信