狄拉克算子共振的稳定性

IF 0.7 4区 数学 Q2 MATHEMATICS
D. Mokeev
{"title":"狄拉克算子共振的稳定性","authors":"D. Mokeev","doi":"10.1090/spmj/1788","DOIUrl":null,"url":null,"abstract":"<p>The Dirac operator on the semi-axis with a compactly supported potential is investigated. Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis k Subscript n Baseline right-parenthesis Subscript n greater-than-or-equal-to 1\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>k</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(k_n)_{n\\geq 1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the sequence of its resonances, taken with multiplicities and ordered so that <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartAbsoluteValue k Subscript n Baseline EndAbsoluteValue\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:msub> <mml:mi>k</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">|k_n|</mml:annotation> </mml:semantics> </mml:math> </inline-formula> do not decrease as <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> grows. It is proved that for any sequence <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis r Subscript n Baseline right-parenthesis Subscript n greater-than-or-equal-to 1 Baseline element-of script l Superscript 1\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>r</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msup> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(r_n)_{n\\geq 1} \\in \\ell ^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that the points <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k Subscript n Baseline plus r Subscript n\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>k</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>r</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">k_n + r_n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> remain in the lower half-plane for all <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n greater-than-or-equal-to 1\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">n\\geq 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the sequence <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis k Subscript n Baseline plus r Subscript n Baseline right-parenthesis Subscript n greater-than-or-equal-to 1\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>k</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>r</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(k_n + r_n)_{n\\geq 1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is also a sequence of resonances of a similar operator. Moreover, it is shown that the potential of the Dirac operator changes continuously under such perturbations.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":"42 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of resonances for the Dirac operator\",\"authors\":\"D. Mokeev\",\"doi\":\"10.1090/spmj/1788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Dirac operator on the semi-axis with a compactly supported potential is investigated. Let <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis k Subscript n Baseline right-parenthesis Subscript n greater-than-or-equal-to 1\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msub> <mml:mi>k</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:msub> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(k_n)_{n\\\\geq 1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the sequence of its resonances, taken with multiplicities and ordered so that <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"StartAbsoluteValue k Subscript n Baseline EndAbsoluteValue\\\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:msub> <mml:mi>k</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mrow> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">|k_n|</mml:annotation> </mml:semantics> </mml:math> </inline-formula> do not decrease as <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n\\\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> grows. It is proved that for any sequence <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis r Subscript n Baseline right-parenthesis Subscript n greater-than-or-equal-to 1 Baseline element-of script l Superscript 1\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msub> <mml:mi>r</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:msub> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msup> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(r_n)_{n\\\\geq 1} \\\\in \\\\ell ^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that the points <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"k Subscript n Baseline plus r Subscript n\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>k</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>r</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">k_n + r_n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> remain in the lower half-plane for all <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n greater-than-or-equal-to 1\\\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">n\\\\geq 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the sequence <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis k Subscript n Baseline plus r Subscript n Baseline right-parenthesis Subscript n greater-than-or-equal-to 1\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msub> <mml:mi>k</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>r</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:msub> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(k_n + r_n)_{n\\\\geq 1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is also a sequence of resonances of a similar operator. Moreover, it is shown that the potential of the Dirac operator changes continuously under such perturbations.</p>\",\"PeriodicalId\":51162,\"journal\":{\"name\":\"St Petersburg Mathematical Journal\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"St Petersburg Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/spmj/1788\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1788","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了半轴上具有紧凑支撑势的狄拉克算子。设 ( k n ) n ≥ 1 (k_n)_{n\geq 1} 为其共振序列,取其乘数并排序,使得| k n | |k_n| 不随 n n 的增长而减小。实验证明,对于任意序列 ( r n ) n ≥ 1 ∈ 1 ℓ 1 (r_n)_{n\geq 1}\in \ell ^1,使得点 k n + r n k_n + r_n 对于所有 n ≥ 1 n\geq 1 都保持在下半平面,序列 ( k n + r n ) n ≥ 1 (k_n + r_n)_{n\geq 1} 也是类似算子的共振序列。此外,研究还表明,在这种扰动下,狄拉克算子的势会连续变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of resonances for the Dirac operator

The Dirac operator on the semi-axis with a compactly supported potential is investigated. Let ( k n ) n 1 (k_n)_{n\geq 1} be the sequence of its resonances, taken with multiplicities and ordered so that | k n | |k_n| do not decrease as n n grows. It is proved that for any sequence ( r n ) n 1 1 (r_n)_{n\geq 1} \in \ell ^1 such that the points k n + r n k_n + r_n remain in the lower half-plane for all n 1 n\geq 1 , the sequence ( k n + r n ) n 1 (k_n + r_n)_{n\geq 1} is also a sequence of resonances of a similar operator. Moreover, it is shown that the potential of the Dirac operator changes continuously under such perturbations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
52
审稿时长
>12 weeks
期刊介绍: This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信