{"title":"Derivative of the Minkowski function for numbers with bounded partial quotients","authors":"D. Gayfulin","doi":"10.1090/spmj/1777","DOIUrl":null,"url":null,"abstract":"It is well known that the derivative of the Minkowski function <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"question-mark left-parenthesis x right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo>?</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">?(x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (whenever exists) may take only two values: <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0\"> <mml:semantics> <mml:mn>0</mml:mn> <mml:annotation encoding=\"application/x-tex\">0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"plus normal infinity\"> <mml:semantics> <mml:mrow> <mml:mo>+</mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">+\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper E Subscript n\"> <mml:semantics> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mtext mathvariant=\"bold\">E</mml:mtext> </mml:mrow> <mml:mi>n</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\textbf {E}_n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the set of irrational numbers on the interval <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket 0 semicolon 1 right-bracket\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>;</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">[0; 1]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> whose partial quotients (related to the continued fraction expansion) do not exceed <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. It is also known that the quantity <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"question-mark Superscript prime Baseline left-parenthesis x right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mo>?</mml:mo> <mml:mo>′</mml:mo> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">?’(x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> at a point <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"x equals left-bracket 0 semicolon a 1 comma a 2 comma ellipsis comma a Subscript t Baseline comma ellipsis right-bracket\"> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>=</mml:mo> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>;</mml:mo> <mml:msub> <mml:mi>a</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>a</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>a</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">x=[0;a_1,a_2,\\dots ,a_t,\\dots ]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is linked with the limit behavior of the arithmetic means <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis a 1 plus a 2 plus midline-horizontal-ellipsis plus a Subscript t Baseline right-parenthesis slash t\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>a</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>a</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo>+</mml:mo> <mml:mo>⋯<!-- ⋯ --></mml:mo> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>a</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(a_1+a_2+\\dots +a_t)/t</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In particular, A. Dushistova, I. Kan, and N. Moshchevitin showed that if <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"x element-of bold upper E Subscript n\"> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mtext mathvariant=\"bold\">E</mml:mtext> </mml:mrow> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">x\\in \\textbf {E}_n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> satisfies <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a 1 plus a 2 plus midline-horizontal-ellipsis plus a Subscript t Baseline greater-than left-parenthesis kappa 1 Superscript left-parenthesis n right-parenthesis Baseline minus epsilon right-parenthesis t\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>a</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>a</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo>+</mml:mo> <mml:mo>⋯<!-- ⋯ --></mml:mo> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>a</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msubsup> <mml:mi>κ<!-- κ --></mml:mi> <mml:mn>1</mml:mn> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:msubsup> <mml:mo>−<!-- − --></mml:mo> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>t</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">a_1+a_2+\\dots +a_t>(\\kappa ^{(n)}_1-\\varepsilon ) t</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon greater-than 0\"> <mml:semantics> <mml:mrow> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\varepsilon >0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"kappa 1 Superscript left-parenthesis n right-parenthesis\"> <mml:semantics> <mml:msubsup> <mml:mi>κ<!-- κ --></mml:mi> <mml:mn>1</mml:mn> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">\\kappa ^{(n)}_1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a certain explicit constant, then <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"question-mark Superscript prime Baseline left-parenthesis x right-parenthesis equals plus normal infinity\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mo>?</mml:mo> <mml:mo>′</mml:mo> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mo>+</mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">?’(x)=+\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. They also showed that the quantity <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"kappa 1 Superscript left-parenthesis n right-parenthesis\"> <mml:semantics> <mml:msubsup> <mml:mi>κ<!-- κ --></mml:mi> <mml:mn>1</mml:mn> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">\\kappa ^{(n)}_1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> cannot be increased. In the present paper, a dual problem is treated: how small may the quantity <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a 1 plus a 2 plus midline-horizontal-ellipsis plus a Subscript t minus kappa 1 Superscript left-parenthesis n right-parenthesis Baseline t\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>a</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>a</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo>+</mml:mo> <mml:mo>⋯<!-- ⋯ --></mml:mo> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>a</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>−<!-- − --></mml:mo> <mml:msubsup> <mml:mi>κ<!-- κ --></mml:mi> <mml:mn>1</mml:mn> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:msubsup> <mml:mi>t</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">a_1+a_2+\\dots +a_t-\\kappa ^{(n)}_1 t</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be if <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"question-mark Superscript prime Baseline left-parenthesis x right-parenthesis equals 0\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mo>?</mml:mo> <mml:mo>′</mml:mo> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">?’(x)=0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>? Optimal estimates in this problem are found.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" 2","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/spmj/1777","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
It is well known that the derivative of the Minkowski function ?(x)?(x) (whenever exists) may take only two values: 00 and +∞+\infty. Let En\textbf {E}_n be the set of irrational numbers on the interval [0;1][0; 1] whose partial quotients (related to the continued fraction expansion) do not exceed nn. It is also known that the quantity ?′(x)?’(x) at a point x=[0;a1,a2,…,at,…]x=[0;a_1,a_2,\dots ,a_t,\dots ] is linked with the limit behavior of the arithmetic means (a1+a2+⋯+at)/t(a_1+a_2+\dots +a_t)/t. In particular, A. Dushistova, I. Kan, and N. Moshchevitin showed that if x∈Enx\in \textbf {E}_n satisfies a1+a2+⋯+at>(κ1(n)−ε)ta_1+a_2+\dots +a_t>(\kappa ^{(n)}_1-\varepsilon ) t, where ε>0\varepsilon >0 and κ1(n)\kappa ^{(n)}_1 is a certain explicit constant, then ?′(x)=+∞?’(x)=+\infty. They also showed that the quantity κ1(n)\kappa ^{(n)}_1 cannot be increased. In the present paper, a dual problem is treated: how small may the quantity a1+a2+⋯+at−κ1(n)ta_1+a_2+\dots +a_t-\kappa ^{(n)}_1 t be if ?′(x)=0?’(x)=0? Optimal estimates in this problem are found.
期刊介绍:
This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.