Sufficient conditions for the minimality of biconcave functions

IF 0.7 4区 数学 Q2 MATHEMATICS
M. Novikov
{"title":"Sufficient conditions for the minimality of biconcave functions","authors":"M. Novikov","doi":"10.1090/spmj/1781","DOIUrl":null,"url":null,"abstract":"This paper describes sufficient conditions under which a biconcave function <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper B colon German upper S equals StartSet left-parenthesis x comma y right-parenthesis element-of double-struck upper R squared colon x minus 2 less-than-or-equal-to y less-than-or-equal-to x plus 2 EndSet right-arrow double-struck upper R\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">B</mml:mi> </mml:mrow> <mml:mo>:<!-- : --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"fraktur\">S</mml:mi> </mml:mrow> <mml:mo>=</mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>y</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>:<!-- : --></mml:mo> <mml:mi>x</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>y</mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>x</mml:mi> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> <mml:mo stretchy=\"false\">→<!-- → --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {B}\\colon \\mathfrak {S}=\\{ (x,y)\\in \\mathbb {R}^2\\colon x-2\\le y\\le x+2 \\}\\to \\mathbb {R}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is minimal with respect to an obstacle <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L colon German upper S right-arrow left-bracket negative normal infinity comma plus normal infinity right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>L</mml:mi> <mml:mo>:<!-- : --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"fraktur\">S</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">→<!-- → --></mml:mo> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> <mml:mo>,</mml:mo> <mml:mo>+</mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L\\colon \\mathfrak {S}\\to [-\\infty ,+\\infty )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, that is, it is the pointwise minimal among all biconcave functions <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B colon German upper S right-arrow double-struck upper R\"> <mml:semantics> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>:<!-- : --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"fraktur\">S</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">→<!-- → --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">B\\colon \\mathfrak {S}\\to \\mathbb {R}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that satisfy the inequality <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B greater-than-or-equal-to upper L\"> <mml:semantics> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mi>L</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">B\\ge L</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" 9","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/spmj/1781","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes sufficient conditions under which a biconcave function B : S = { ( x , y ) R 2 : x 2 y x + 2 } R \mathcal {B}\colon \mathfrak {S}=\{ (x,y)\in \mathbb {R}^2\colon x-2\le y\le x+2 \}\to \mathbb {R} is minimal with respect to an obstacle L : S [ , + ) L\colon \mathfrak {S}\to [-\infty ,+\infty ) , that is, it is the pointwise minimal among all biconcave functions B : S R B\colon \mathfrak {S}\to \mathbb {R} that satisfy the inequality B L B\ge L .
双凹函数极小性的充分条件
本文给出了双凹函数B: S =的充分条件 { (x, y)∈r2: x−2≤y≤x + 2 } →r \mathcal {b}\colon \mathfrak {s}={(x,y)\in \mathbb {r}^2\colon x-2\le y\le X +2}\to \mathbb {r} S→[−∞,+∞)L\colon \mathfrak {s}\to [-]\infty ,+\infty ),即它是所有双凹函数B: S→R B中的点极小值\colon \mathfrak {s}\to \mathbb {r} 满足不等式B≥L B\ge L。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
52
审稿时长
>12 weeks
期刊介绍: This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信