部分商有界数的Minkowski函数的导数

IF 0.7 4区 数学 Q2 MATHEMATICS
D. Gayfulin
{"title":"部分商有界数的Minkowski函数的导数","authors":"D. Gayfulin","doi":"10.1090/spmj/1777","DOIUrl":null,"url":null,"abstract":"It is well known that the derivative of the Minkowski function <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"question-mark left-parenthesis x right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo>?</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">?(x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (whenever exists) may take only two values: <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0\"> <mml:semantics> <mml:mn>0</mml:mn> <mml:annotation encoding=\"application/x-tex\">0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"plus normal infinity\"> <mml:semantics> <mml:mrow> <mml:mo>+</mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">+\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper E Subscript n\"> <mml:semantics> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mtext mathvariant=\"bold\">E</mml:mtext> </mml:mrow> <mml:mi>n</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\textbf {E}_n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the set of irrational numbers on the interval <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket 0 semicolon 1 right-bracket\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>;</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">[0; 1]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> whose partial quotients (related to the continued fraction expansion) do not exceed <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. It is also known that the quantity <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"question-mark Superscript prime Baseline left-parenthesis x right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mo>?</mml:mo> <mml:mo>′</mml:mo> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">?’(x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> at a point <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"x equals left-bracket 0 semicolon a 1 comma a 2 comma ellipsis comma a Subscript t Baseline comma ellipsis right-bracket\"> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>=</mml:mo> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>;</mml:mo> <mml:msub> <mml:mi>a</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>a</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>a</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">x=[0;a_1,a_2,\\dots ,a_t,\\dots ]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is linked with the limit behavior of the arithmetic means <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis a 1 plus a 2 plus midline-horizontal-ellipsis plus a Subscript t Baseline right-parenthesis slash t\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>a</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>a</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo>+</mml:mo> <mml:mo>⋯<!-- ⋯ --></mml:mo> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>a</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(a_1+a_2+\\dots +a_t)/t</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In particular, A. Dushistova, I. Kan, and N. Moshchevitin showed that if <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"x element-of bold upper E Subscript n\"> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mtext mathvariant=\"bold\">E</mml:mtext> </mml:mrow> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">x\\in \\textbf {E}_n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> satisfies <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a 1 plus a 2 plus midline-horizontal-ellipsis plus a Subscript t Baseline greater-than left-parenthesis kappa 1 Superscript left-parenthesis n right-parenthesis Baseline minus epsilon right-parenthesis t\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>a</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>a</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo>+</mml:mo> <mml:mo>⋯<!-- ⋯ --></mml:mo> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>a</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>&gt;</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msubsup> <mml:mi>κ<!-- κ --></mml:mi> <mml:mn>1</mml:mn> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:msubsup> <mml:mo>−<!-- − --></mml:mo> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>t</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">a_1+a_2+\\dots +a_t&gt;(\\kappa ^{(n)}_1-\\varepsilon ) t</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon greater-than 0\"> <mml:semantics> <mml:mrow> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\varepsilon &gt;0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"kappa 1 Superscript left-parenthesis n right-parenthesis\"> <mml:semantics> <mml:msubsup> <mml:mi>κ<!-- κ --></mml:mi> <mml:mn>1</mml:mn> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">\\kappa ^{(n)}_1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a certain explicit constant, then <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"question-mark Superscript prime Baseline left-parenthesis x right-parenthesis equals plus normal infinity\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mo>?</mml:mo> <mml:mo>′</mml:mo> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mo>+</mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">?’(x)=+\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. They also showed that the quantity <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"kappa 1 Superscript left-parenthesis n right-parenthesis\"> <mml:semantics> <mml:msubsup> <mml:mi>κ<!-- κ --></mml:mi> <mml:mn>1</mml:mn> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">\\kappa ^{(n)}_1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> cannot be increased. In the present paper, a dual problem is treated: how small may the quantity <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a 1 plus a 2 plus midline-horizontal-ellipsis plus a Subscript t minus kappa 1 Superscript left-parenthesis n right-parenthesis Baseline t\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>a</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>a</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo>+</mml:mo> <mml:mo>⋯<!-- ⋯ --></mml:mo> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>a</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>−<!-- − --></mml:mo> <mml:msubsup> <mml:mi>κ<!-- κ --></mml:mi> <mml:mn>1</mml:mn> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:msubsup> <mml:mi>t</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">a_1+a_2+\\dots +a_t-\\kappa ^{(n)}_1 t</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be if <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"question-mark Superscript prime Baseline left-parenthesis x right-parenthesis equals 0\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mo>?</mml:mo> <mml:mo>′</mml:mo> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">?’(x)=0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>? Optimal estimates in this problem are found.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" 2","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Derivative of the Minkowski function for numbers with bounded partial quotients\",\"authors\":\"D. Gayfulin\",\"doi\":\"10.1090/spmj/1777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that the derivative of the Minkowski function <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"question-mark left-parenthesis x right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mo>?</mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">?(x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (whenever exists) may take only two values: <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"0\\\"> <mml:semantics> <mml:mn>0</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"plus normal infinity\\\"> <mml:semantics> <mml:mrow> <mml:mo>+</mml:mo> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">+\\\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Let <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"bold upper E Subscript n\\\"> <mml:semantics> <mml:msub> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mtext mathvariant=\\\"bold\\\">E</mml:mtext> </mml:mrow> <mml:mi>n</mml:mi> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\textbf {E}_n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the set of irrational numbers on the interval <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-bracket 0 semicolon 1 right-bracket\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>;</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\\\"false\\\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">[0; 1]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> whose partial quotients (related to the continued fraction expansion) do not exceed <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n\\\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. It is also known that the quantity <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"question-mark Superscript prime Baseline left-parenthesis x right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mo>?</mml:mo> <mml:mo>′</mml:mo> </mml:msup> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">?’(x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> at a point <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"x equals left-bracket 0 semicolon a 1 comma a 2 comma ellipsis comma a Subscript t Baseline comma ellipsis right-bracket\\\"> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>=</mml:mo> <mml:mo stretchy=\\\"false\\\">[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>;</mml:mo> <mml:msub> <mml:mi>a</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>a</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>a</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo stretchy=\\\"false\\\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">x=[0;a_1,a_2,\\\\dots ,a_t,\\\\dots ]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is linked with the limit behavior of the arithmetic means <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis a 1 plus a 2 plus midline-horizontal-ellipsis plus a Subscript t Baseline right-parenthesis slash t\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msub> <mml:mi>a</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>a</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo>+</mml:mo> <mml:mo>⋯<!-- ⋯ --></mml:mo> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>a</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(a_1+a_2+\\\\dots +a_t)/t</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In particular, A. Dushistova, I. Kan, and N. Moshchevitin showed that if <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"x element-of bold upper E Subscript n\\\"> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msub> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mtext mathvariant=\\\"bold\\\">E</mml:mtext> </mml:mrow> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">x\\\\in \\\\textbf {E}_n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> satisfies <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"a 1 plus a 2 plus midline-horizontal-ellipsis plus a Subscript t Baseline greater-than left-parenthesis kappa 1 Superscript left-parenthesis n right-parenthesis Baseline minus epsilon right-parenthesis t\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>a</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>a</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo>+</mml:mo> <mml:mo>⋯<!-- ⋯ --></mml:mo> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>a</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>&gt;</mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msubsup> <mml:mi>κ<!-- κ --></mml:mi> <mml:mn>1</mml:mn> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> </mml:msubsup> <mml:mo>−<!-- − --></mml:mo> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mi>t</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">a_1+a_2+\\\\dots +a_t&gt;(\\\\kappa ^{(n)}_1-\\\\varepsilon ) t</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"epsilon greater-than 0\\\"> <mml:semantics> <mml:mrow> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\varepsilon &gt;0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"kappa 1 Superscript left-parenthesis n right-parenthesis\\\"> <mml:semantics> <mml:msubsup> <mml:mi>κ<!-- κ --></mml:mi> <mml:mn>1</mml:mn> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> </mml:msubsup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\kappa ^{(n)}_1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a certain explicit constant, then <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"question-mark Superscript prime Baseline left-parenthesis x right-parenthesis equals plus normal infinity\\\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mo>?</mml:mo> <mml:mo>′</mml:mo> </mml:msup> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mo>+</mml:mo> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">?’(x)=+\\\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. They also showed that the quantity <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"kappa 1 Superscript left-parenthesis n right-parenthesis\\\"> <mml:semantics> <mml:msubsup> <mml:mi>κ<!-- κ --></mml:mi> <mml:mn>1</mml:mn> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> </mml:msubsup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\kappa ^{(n)}_1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> cannot be increased. In the present paper, a dual problem is treated: how small may the quantity <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"a 1 plus a 2 plus midline-horizontal-ellipsis plus a Subscript t minus kappa 1 Superscript left-parenthesis n right-parenthesis Baseline t\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>a</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>a</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo>+</mml:mo> <mml:mo>⋯<!-- ⋯ --></mml:mo> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>a</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>−<!-- − --></mml:mo> <mml:msubsup> <mml:mi>κ<!-- κ --></mml:mi> <mml:mn>1</mml:mn> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> </mml:msubsup> <mml:mi>t</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">a_1+a_2+\\\\dots +a_t-\\\\kappa ^{(n)}_1 t</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be if <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"question-mark Superscript prime Baseline left-parenthesis x right-parenthesis equals 0\\\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mo>?</mml:mo> <mml:mo>′</mml:mo> </mml:msup> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">?’(x)=0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>? Optimal estimates in this problem are found.\",\"PeriodicalId\":51162,\"journal\":{\"name\":\"St Petersburg Mathematical Journal\",\"volume\":\" 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"St Petersburg Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/spmj/1777\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/spmj/1777","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,闵可夫斯基函数的导数?(x) ?(x)(无论何时存在)只能取两个值:0 0和+∞+ \infty。设\textbfen E_n{为区间[0;1] [0;1]其部分商(与连分式展开有关)不超过n n。还知道数量是多少?' (x) ? ' (x)在点x = [0;A 1, A 2,…,A t,…]x=[0;a_1,a_2, }\dots,a_t, \dots]与算术平均值的极限行为(A 1+ A 2+⋯+ A t)/t (a_1+a_2+ \dots +a_t)/t有关。特别是a . Dushistova, I. Kan和n . Moshchevitin证明,如果x∈E n x \in\textbfE_n{满足1 + a 2 +⋯+ at &gt;(κ 1 (n)−ε) t a_1+a_2+ }\dots +a_t&gt;(\kappa ^(n{)_1}- \varepsilon) t,其中ε &gt;0 \varepsilon &gt;0和κ 1 (n) \kappa ^(n{)_1}是某个显式常数,则?' (x)=+∞? ' (x)=+ \infty。他们还发现,κ 1 (n) \kappa ^(n{)_1}的数量不能增加。本文研究了一个对偶问题:a 1+a 2+⋯+a t−κ 1 (n) t a_1+a_2+ \dots +a_t- \kappa ^(n{)_1} t有多小?' (x)=0 ? ' (x)=0 ?找到了该问题的最优估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Derivative of the Minkowski function for numbers with bounded partial quotients
It is well known that the derivative of the Minkowski function ? ( x ) ?(x) (whenever exists) may take only two values: 0 0 and + +\infty . Let E n \textbf {E}_n be the set of irrational numbers on the interval [ 0 ; 1 ] [0; 1] whose partial quotients (related to the continued fraction expansion) do not exceed n n . It is also known that the quantity ? ( x ) ?’(x) at a point x = [ 0 ; a 1 , a 2 , , a t , ] x=[0;a_1,a_2,\dots ,a_t,\dots ] is linked with the limit behavior of the arithmetic means ( a 1 + a 2 + + a t ) / t (a_1+a_2+\dots +a_t)/t . In particular, A. Dushistova, I. Kan, and N. Moshchevitin showed that if x E n x\in \textbf {E}_n satisfies a 1 + a 2 + + a t > ( κ 1 ( n ) ε ) t a_1+a_2+\dots +a_t>(\kappa ^{(n)}_1-\varepsilon ) t , where ε > 0 \varepsilon >0 and κ 1 ( n ) \kappa ^{(n)}_1 is a certain explicit constant, then ? ( x ) = + ?’(x)=+\infty . They also showed that the quantity κ 1 ( n ) \kappa ^{(n)}_1 cannot be increased. In the present paper, a dual problem is treated: how small may the quantity a 1 + a 2 + + a t κ 1 ( n ) t a_1+a_2+\dots +a_t-\kappa ^{(n)}_1 t be if ? ( x ) = 0 ?’(x)=0 ? Optimal estimates in this problem are found.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
52
审稿时长
>12 weeks
期刊介绍: This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信