{"title":"Stability of resonances for the Dirac operator","authors":"D. Mokeev","doi":"10.1090/spmj/1788","DOIUrl":null,"url":null,"abstract":"<p>The Dirac operator on the semi-axis with a compactly supported potential is investigated. Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis k Subscript n Baseline right-parenthesis Subscript n greater-than-or-equal-to 1\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>k</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(k_n)_{n\\geq 1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the sequence of its resonances, taken with multiplicities and ordered so that <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartAbsoluteValue k Subscript n Baseline EndAbsoluteValue\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:msub> <mml:mi>k</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">|k_n|</mml:annotation> </mml:semantics> </mml:math> </inline-formula> do not decrease as <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> grows. It is proved that for any sequence <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis r Subscript n Baseline right-parenthesis Subscript n greater-than-or-equal-to 1 Baseline element-of script l Superscript 1\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>r</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msup> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(r_n)_{n\\geq 1} \\in \\ell ^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that the points <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k Subscript n Baseline plus r Subscript n\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>k</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>r</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">k_n + r_n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> remain in the lower half-plane for all <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n greater-than-or-equal-to 1\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">n\\geq 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the sequence <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis k Subscript n Baseline plus r Subscript n Baseline right-parenthesis Subscript n greater-than-or-equal-to 1\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>k</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>r</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(k_n + r_n)_{n\\geq 1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is also a sequence of resonances of a similar operator. Moreover, it is shown that the potential of the Dirac operator changes continuously under such perturbations.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":"42 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1788","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Dirac operator on the semi-axis with a compactly supported potential is investigated. Let (kn)n≥1(k_n)_{n\geq 1} be the sequence of its resonances, taken with multiplicities and ordered so that |kn||k_n| do not decrease as nn grows. It is proved that for any sequence (rn)n≥1∈ℓ1(r_n)_{n\geq 1} \in \ell ^1 such that the points kn+rnk_n + r_n remain in the lower half-plane for all n≥1n\geq 1, the sequence (kn+rn)n≥1(k_n + r_n)_{n\geq 1} is also a sequence of resonances of a similar operator. Moreover, it is shown that the potential of the Dirac operator changes continuously under such perturbations.
本文研究了半轴上具有紧凑支撑势的狄拉克算子。设 ( k n ) n ≥ 1 (k_n)_{n\geq 1} 为其共振序列,取其乘数并排序,使得| k n | |k_n| 不随 n n 的增长而减小。实验证明,对于任意序列 ( r n ) n ≥ 1 ∈ 1 ℓ 1 (r_n)_{n\geq 1}\in \ell ^1,使得点 k n + r n k_n + r_n 对于所有 n ≥ 1 n\geq 1 都保持在下半平面,序列 ( k n + r n ) n ≥ 1 (k_n + r_n)_{n\geq 1} 也是类似算子的共振序列。此外,研究还表明,在这种扰动下,狄拉克算子的势会连续变化。
期刊介绍:
This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.