{"title":"复平面上有界凸域解析函数的表示","authors":"A. Krivosheev, A. Rafikov","doi":"10.1090/spmj/1779","DOIUrl":null,"url":null,"abstract":"The paper is devoted to entire functions of exponential type and regular growth. Exceptional sets are investigated outside of which these functions have estimates from below that asymptotically coincide with their estimates from above. An explicit construction of an exceptional set, which consists of disks with centers at zeros of the entire function, is indicated. The concept of a properly balanced set is introduced, which is a natural generalization of the concept of a regular set by B. Ya. Levin. It is proved that the zero set of an entire function is properly balanced if and only if each function analytic in the interior of the conjugate diagram of the entire function in question and continuous up to the boundary is represented by a series of exponential monomials whose exponents are zeros of this entire function. This result generalizes the classical result of A. F. Leont′ev on the representation of analytic functions in a convex domain to the case of a multiple zero set.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" 11","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Representation of analytic functions in bounded convex domains on the complex plane\",\"authors\":\"A. Krivosheev, A. Rafikov\",\"doi\":\"10.1090/spmj/1779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper is devoted to entire functions of exponential type and regular growth. Exceptional sets are investigated outside of which these functions have estimates from below that asymptotically coincide with their estimates from above. An explicit construction of an exceptional set, which consists of disks with centers at zeros of the entire function, is indicated. The concept of a properly balanced set is introduced, which is a natural generalization of the concept of a regular set by B. Ya. Levin. It is proved that the zero set of an entire function is properly balanced if and only if each function analytic in the interior of the conjugate diagram of the entire function in question and continuous up to the boundary is represented by a series of exponential monomials whose exponents are zeros of this entire function. This result generalizes the classical result of A. F. Leont′ev on the representation of analytic functions in a convex domain to the case of a multiple zero set.\",\"PeriodicalId\":51162,\"journal\":{\"name\":\"St Petersburg Mathematical Journal\",\"volume\":\" 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"St Petersburg Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/spmj/1779\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/spmj/1779","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文主要研究指数型整函数和正则增长函数。研究了异常集,在异常集之外,这些函数的估计从下面渐近地与它们的估计从上面重合。给出了一个异常集的显式构造,该异常集由以整个函数零点为中心的圆盘组成。引入了适当平衡集的概念,它是B. Ya对正则集概念的自然推广。莱文。证明了一个完整函数的零集是适当平衡的,当且仅当在整个函数的共轭图内部解析且连续到边界的每个函数都用指数为该完整函数的零的指数单项式表示。这一结果推广了a . F. Leont 'ev关于解析函数在凸域上表示的经典结果到多重零集的情况。
Representation of analytic functions in bounded convex domains on the complex plane
The paper is devoted to entire functions of exponential type and regular growth. Exceptional sets are investigated outside of which these functions have estimates from below that asymptotically coincide with their estimates from above. An explicit construction of an exceptional set, which consists of disks with centers at zeros of the entire function, is indicated. The concept of a properly balanced set is introduced, which is a natural generalization of the concept of a regular set by B. Ya. Levin. It is proved that the zero set of an entire function is properly balanced if and only if each function analytic in the interior of the conjugate diagram of the entire function in question and continuous up to the boundary is represented by a series of exponential monomials whose exponents are zeros of this entire function. This result generalizes the classical result of A. F. Leont′ev on the representation of analytic functions in a convex domain to the case of a multiple zero set.
期刊介绍:
This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.