Stochastic Processes and their Applications最新文献

筛选
英文 中文
Conformal covariance of connection probabilities in the 2D critical FK-Ising model 二维临界FK-Ising模型中连接概率的保形协方差
IF 1.1 2区 数学
Stochastic Processes and their Applications Pub Date : 2025-06-24 DOI: 10.1016/j.spa.2025.104734
Federico Camia , Yu Feng
{"title":"Conformal covariance of connection probabilities in the 2D critical FK-Ising model","authors":"Federico Camia ,&nbsp;Yu Feng","doi":"10.1016/j.spa.2025.104734","DOIUrl":"10.1016/j.spa.2025.104734","url":null,"abstract":"<div><div>We study connection probabilities between vertices of the square lattice for the critical random-cluster (FK) model with cluster weight 2, which is related to the critical Ising model. We consider the model on the plane and on domains conformally equivalent to the upper half-plane. We prove that, when appropriately rescaled, the connection probabilities between vertices in the domain or on the boundary have nontrivial limits, as the mesh size of the square lattice is sent to zero, and that those limits are conformally covariant. This provides an important step in the proof of the Delfino-Viti conjecture for FK-Ising percolation as well as an alternative proof of the conformal covariance of the Ising spin correlation functions. In an appendix, we also derive new exact formulas for some Ising boundary spin correlation functions.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"189 ","pages":"Article 104734"},"PeriodicalIF":1.1,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144518428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The zero viscosity limit of stochastic Navier–Stokes flows 随机Navier-Stokes流的零粘度极限
IF 1.1 2区 数学
Stochastic Processes and their Applications Pub Date : 2025-06-23 DOI: 10.1016/j.spa.2025.104717
Daniel Goodair, Dan Crisan
{"title":"The zero viscosity limit of stochastic Navier–Stokes flows","authors":"Daniel Goodair,&nbsp;Dan Crisan","doi":"10.1016/j.spa.2025.104717","DOIUrl":"10.1016/j.spa.2025.104717","url":null,"abstract":"<div><div>We introduce an analogue to Kato’s Criterion regarding the inviscid convergence of weak solutions of the stochastic Navier–Stokes equations to the strong solution of the deterministic Euler equation. Our assumptions cover additive, multiplicative and transport type noise models. This is achieved firstly for the typical noise scaling of <span><math><msup><mrow><mi>ν</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span>, before considering a new parameter which approaches zero with viscosity but at a potentially different rate. We determine the implications of this for our criterion and clarify a sense in which the scaling by <span><math><msup><mrow><mi>ν</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span> is optimal. The criterion applies in both two and three dimensions, with some technical simplifications in the 2D case.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"189 ","pages":"Article 104717"},"PeriodicalIF":1.1,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144366774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Γ-expansion of the measure-current large deviations rate functional of non-reversible finite-state Markov chains 不可逆有限状态马尔可夫链的测量电流大偏差率泛函的Γ-expansion
IF 1.1 2区 数学
Stochastic Processes and their Applications Pub Date : 2025-06-23 DOI: 10.1016/j.spa.2025.104733
S. Kim , C. Landim
{"title":"Γ-expansion of the measure-current large deviations rate functional of non-reversible finite-state Markov chains","authors":"S. Kim ,&nbsp;C. Landim","doi":"10.1016/j.spa.2025.104733","DOIUrl":"10.1016/j.spa.2025.104733","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Consider a sequence of continuous-time Markov chains &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; evolving on a fixed finite state space &lt;span&gt;&lt;math&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. Let &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; be the measure-current large deviations rate functional for &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt;, as &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mi&gt;∞&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Under a hypothesis on the jump rates, we prove that &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; can be written as &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;∑&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for some rate functionals &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;. The weights &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt; correspond to the time-scales at which the sequence of Markov chains &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt; evolves among the metastable wells, and the rate functionals &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; characterise the asymptotic Markovian dynamics among these wells. This expansion provides therefore an alternative description of the metastable behaviour of a sequence of Markovian dynamics. Together with the results in Bertin et al. (2024) and Landim (2023) this work finishes the project of characterising the hierarchical metastable behaviour of finite-state Markov chains by means of the &lt;span&gt;&lt;math&gt;&lt;mi&gt;Γ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-expansion of large deviations rate functionals. In addition, we present optimal conditions under which the measure (Donsker–Varadhan) or the measure-current large deviations rate functional determines the original dynamics, and calculate the first and second derivatives of the measure large deviations rate functional, thereby generalising the resul","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"189 ","pages":"Article 104733"},"PeriodicalIF":1.1,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144492180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global strong solution for the stochastic tamed Chemotaxis–Navier–Stokes system in R3 R3随机驯服Chemotaxis-Navier-Stokes系统的全局强解
IF 1.1 2区 数学
Stochastic Processes and their Applications Pub Date : 2025-06-23 DOI: 10.1016/j.spa.2025.104732
Fan Xu, Lei Zhang, Bin Liu
{"title":"Global strong solution for the stochastic tamed Chemotaxis–Navier–Stokes system in R3","authors":"Fan Xu,&nbsp;Lei Zhang,&nbsp;Bin Liu","doi":"10.1016/j.spa.2025.104732","DOIUrl":"10.1016/j.spa.2025.104732","url":null,"abstract":"<div><div>In this work, we consider the 3D Cauchy problem for a coupled system arising in biomathematics, consisting of a chemotaxis model with a cubic logistic source and the stochastic tamed Navier–Stokes equations (STCNS, for short). Our main goal is to establish the existence and uniqueness of a global strong solution (strong in both the probabilistic and PDE senses) for the 3D STCNS system with large initial data. To achieve this, we first introduce a triple approximation scheme by using the Friedrichs mollifier, frequency truncation operators, and cut-off functions. This scheme enables the construction of sufficiently smooth approximate solutions and facilitates the effective application of the entropy-energy method. Then, based on a newly derived stochastic version of the entropy-energy inequality, we further establish some a priori higher-order energy estimates, which together with the stochastic compactness method, allow us to construct the strong solution for the STCNS system.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"189 ","pages":"Article 104732"},"PeriodicalIF":1.1,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144472109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Covariance operator estimation via adaptive thresholding 基于自适应阈值的协方差算子估计
IF 1.1 2区 数学
Stochastic Processes and their Applications Pub Date : 2025-06-19 DOI: 10.1016/j.spa.2025.104705
Omar Al-Ghattas, Daniel Sanz-Alonso
{"title":"Covariance operator estimation via adaptive thresholding","authors":"Omar Al-Ghattas,&nbsp;Daniel Sanz-Alonso","doi":"10.1016/j.spa.2025.104705","DOIUrl":"10.1016/j.spa.2025.104705","url":null,"abstract":"<div><div>This paper studies sparse covariance operator estimation for nonstationary processes with sharply varying marginal variance and small correlation lengthscale. We introduce a covariance operator estimator that adaptively thresholds the sample covariance function using an estimate of the variance component. Building on recent results from empirical process theory, we derive an operator norm bound on the estimation error in terms of the sparsity level of the covariance and the expected supremum of a normalized process. Our theory and numerical simulations demonstrate the advantage of adaptive threshold estimators over universal threshold and sample covariance estimators in nonstationary settings.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"189 ","pages":"Article 104705"},"PeriodicalIF":1.1,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144471521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Foreword — In honor of Francis Comets 前言-为了纪念弗朗西斯·科梅斯
IF 1.2 2区 数学
Stochastic Processes and their Applications Pub Date : 2025-06-18 DOI: 10.1016/j.spa.2025.104731
Thierry Bodineau, Patrick Cattiaux, Giambattista Giacomin
{"title":"Foreword — In honor of Francis Comets","authors":"Thierry Bodineau,&nbsp;Patrick Cattiaux,&nbsp;Giambattista Giacomin","doi":"10.1016/j.spa.2025.104731","DOIUrl":"10.1016/j.spa.2025.104731","url":null,"abstract":"","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"189 ","pages":"Article 104731"},"PeriodicalIF":1.2,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145094759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heat kernel estimates for regional fractional Laplacians with multi-singular critical potentials in C1,β open sets C1,β开集中具有多重奇异临界势的区域分数阶拉普拉斯算子的热核估计
IF 1.1 2区 数学
Stochastic Processes and their Applications Pub Date : 2025-06-17 DOI: 10.1016/j.spa.2025.104727
Renming Song , Peixue Wu , Shukun Wu
{"title":"Heat kernel estimates for regional fractional Laplacians with multi-singular critical potentials in C1,β open sets","authors":"Renming Song ,&nbsp;Peixue Wu ,&nbsp;Shukun Wu","doi":"10.1016/j.spa.2025.104727","DOIUrl":"10.1016/j.spa.2025.104727","url":null,"abstract":"<div><div>Let <span><math><mi>D</mi></math></span> be an open set of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> and let <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>α</mi></mrow><mrow><mi>D</mi></mrow></msubsup></math></span> be the generator of the censored <span><math><mi>α</mi></math></span>-stable process in <span><math><mi>D</mi></math></span>. In this paper, we establish sharp two-sided heat kernel estimates for <span><math><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>α</mi></mrow><mrow><mi>D</mi></mrow></msubsup><mo>−</mo><mi>κ</mi></mrow></math></span>, with <span><math><mi>κ</mi></math></span> being a non-negative critical potential and <span><math><mi>D</mi></math></span> being a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>β</mi></mrow></msup></math></span> open set, <span><math><mrow><mi>β</mi><mo>∈</mo><mrow><mo>(</mo><msub><mrow><mrow><mo>(</mo><mi>α</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mo>+</mo></mrow></msub><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>. The potential <span><math><mi>κ</mi></math></span> can exhibit multi-singularities and our regularity assumption on <span><math><mi>D</mi></math></span> is weaker than the regularity assumed in earlier literature on heat kernel estimates of fractional Laplacians.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"189 ","pages":"Article 104727"},"PeriodicalIF":1.1,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144322960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New continuity results for a class of time fractional stochastic heat equations in bounded and unbounded domains 一类时间分数型随机热方程在有界和无界区域的新的连续性结果
IF 1.1 2区 数学
Stochastic Processes and their Applications Pub Date : 2025-06-16 DOI: 10.1016/j.spa.2025.104687
Nguyen Huy Tuan , Erkan Nane
{"title":"New continuity results for a class of time fractional stochastic heat equations in bounded and unbounded domains","authors":"Nguyen Huy Tuan ,&nbsp;Erkan Nane","doi":"10.1016/j.spa.2025.104687","DOIUrl":"10.1016/j.spa.2025.104687","url":null,"abstract":"&lt;div&gt;&lt;div&gt;In this paper, we consider a class of time fractional stochastic heat type equation &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;∂&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;∂&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;̇&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;∂&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is the Caputo fractional derivative, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is a Lipschitz continuous function, and &lt;span&gt;&lt;math&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;̇&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/math&gt;&lt;/span&gt; is space–time white noise. These equations have significant applications in modeling temperature in thermal materials. Our main purpose in this paper is to study the continuity of solutions of fractional order Equation (1) with respect to &lt;span&gt;&lt;math&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. Two interesting questions for our problem are stated as follows. Let &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; be the solution of Equation (1) for &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, respectively. The first question is that : Does &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; in an appropriate sense as &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;? The second question is that: Does &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; in an appropriate sense as &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;? We will give affirmative answers to both of these questions. Furthermore, under some suitable assumptions on the initial datum, we provide the convergence rate estimates between &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/m","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"189 ","pages":"Article 104687"},"PeriodicalIF":1.1,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144306824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Moments of polynomial functionals of spectrally positive Lévy processes 谱正lsamvy过程的多项式泛函矩
IF 1.1 2区 数学
Stochastic Processes and their Applications Pub Date : 2025-06-16 DOI: 10.1016/j.spa.2025.104726
Peter Glynn , Royi Jacobovic , Michel Mandjes
{"title":"Moments of polynomial functionals of spectrally positive Lévy processes","authors":"Peter Glynn ,&nbsp;Royi Jacobovic ,&nbsp;Michel Mandjes","doi":"10.1016/j.spa.2025.104726","DOIUrl":"10.1016/j.spa.2025.104726","url":null,"abstract":"<div><div>Let <span><math><mrow><mi>J</mi><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span> be a compound Poisson process with rate <span><math><mrow><mi>λ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> and a jumps distribution <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span> concentrated on <span><math><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></math></span>. In addition, let <span><math><mi>V</mi></math></span> be a random variable which is distributed according to <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span> and independent from <span><math><mrow><mi>J</mi><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span>. Define a new process <span><math><mrow><mi>W</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>≡</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>V</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>≡</mo><mi>V</mi><mo>+</mo><mi>J</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>−</mo><mi>t</mi></mrow></math></span>, <span><math><mrow><mi>t</mi><mo>⩾</mo><mn>0</mn></mrow></math></span> and let <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>V</mi></mrow></msub></math></span> be the first time that <span><math><mrow><mi>W</mi><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span> hits the origin. A long-standing open problem due to Iglehart (1971) and Cohen (1979) is to derive the moments of the functional <span><math><mrow><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mi>τ</mi></mrow></msubsup><mi>W</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>t</mi></mrow></math></span> in terms of the moments of <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mi>λ</mi></math></span>. In the current work, we solve this problem in much greater generality, i.e., first by letting <span><math><mrow><mi>J</mi><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span> belong to a wide class of spectrally positive Lévy processes and secondly, by considering more general class of functionals. We also supply several applications of the existing results, e.g., in studying the process <span><math><mrow><mi>x</mi><mo>↦</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mi>x</mi></mrow></msub></mrow></msubsup><msub><mrow><mi>W</mi></mrow><mrow><mi>x</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>t</mi></mrow></math></span> defined on <span><math><mrow><mi>x</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"190 ","pages":"Article 104726"},"PeriodicalIF":1.1,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144655379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Renewal structure of the tree builder random walk 更新树生成器随机游走的结构
IF 1.1 2区 数学
Stochastic Processes and their Applications Pub Date : 2025-06-14 DOI: 10.1016/j.spa.2025.104725
Rodrigo Ribeiro
{"title":"Renewal structure of the tree builder random walk","authors":"Rodrigo Ribeiro","doi":"10.1016/j.spa.2025.104725","DOIUrl":"10.1016/j.spa.2025.104725","url":null,"abstract":"<div><div>In this paper, we study a class of random walks that build their own tree. At each step, the walker attaches a random number of leaves to its current position. The model can be seen as a subclass of the Random Walk in Changing Environments (RWCE) introduced by G. Amir, I. Benjamini, O. Gurel-Gurevich and G. Kozma. We develop a renewal framework for the process analogous to that established by A-S. Sznitman and M. Zerner in the context of RWRE. This provides a more robust foundation for analyzing the model. As a result of our renewal framework, we establish several limit theorems for the walker’s distance, which include the Strong Law of Large Numbers (SLLN), the Law of the Iterated Logarithm (LIL), Central Limit Theorem (CLT) and Invariance Principle, under an i.i.d. hypothesis for the walker’s leaf-adding mechanism. Further, we show that the limit speed defined by the SLLN is a continuous function over the space of probability distributions on <span><math><mi>N</mi></math></span>.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"190 ","pages":"Article 104725"},"PeriodicalIF":1.1,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144655381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信