{"title":"Moments of polynomial functionals of spectrally positive Lévy processes","authors":"Peter Glynn , Royi Jacobovic , Michel Mandjes","doi":"10.1016/j.spa.2025.104726","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mi>J</mi><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span> be a compound Poisson process with rate <span><math><mrow><mi>λ</mi><mo>></mo><mn>0</mn></mrow></math></span> and a jumps distribution <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span> concentrated on <span><math><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></math></span>. In addition, let <span><math><mi>V</mi></math></span> be a random variable which is distributed according to <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span> and independent from <span><math><mrow><mi>J</mi><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span>. Define a new process <span><math><mrow><mi>W</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>≡</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>V</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>≡</mo><mi>V</mi><mo>+</mo><mi>J</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>−</mo><mi>t</mi></mrow></math></span>, <span><math><mrow><mi>t</mi><mo>⩾</mo><mn>0</mn></mrow></math></span> and let <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>V</mi></mrow></msub></math></span> be the first time that <span><math><mrow><mi>W</mi><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span> hits the origin. A long-standing open problem due to Iglehart (1971) and Cohen (1979) is to derive the moments of the functional <span><math><mrow><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mi>τ</mi></mrow></msubsup><mi>W</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>t</mi></mrow></math></span> in terms of the moments of <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mi>λ</mi></math></span>. In the current work, we solve this problem in much greater generality, i.e., first by letting <span><math><mrow><mi>J</mi><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span> belong to a wide class of spectrally positive Lévy processes and secondly, by considering more general class of functionals. We also supply several applications of the existing results, e.g., in studying the process <span><math><mrow><mi>x</mi><mo>↦</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mi>x</mi></mrow></msub></mrow></msubsup><msub><mrow><mi>W</mi></mrow><mrow><mi>x</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>t</mi></mrow></math></span> defined on <span><math><mrow><mi>x</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"190 ","pages":"Article 104726"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030441492500167X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a compound Poisson process with rate and a jumps distribution concentrated on . In addition, let be a random variable which is distributed according to and independent from . Define a new process , and let be the first time that hits the origin. A long-standing open problem due to Iglehart (1971) and Cohen (1979) is to derive the moments of the functional in terms of the moments of and . In the current work, we solve this problem in much greater generality, i.e., first by letting belong to a wide class of spectrally positive Lévy processes and secondly, by considering more general class of functionals. We also supply several applications of the existing results, e.g., in studying the process defined on .
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.