{"title":"C1,β开集中具有多重奇异临界势的区域分数阶拉普拉斯算子的热核估计","authors":"Renming Song , Peixue Wu , Shukun Wu","doi":"10.1016/j.spa.2025.104727","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>D</mi></math></span> be an open set of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> and let <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>α</mi></mrow><mrow><mi>D</mi></mrow></msubsup></math></span> be the generator of the censored <span><math><mi>α</mi></math></span>-stable process in <span><math><mi>D</mi></math></span>. In this paper, we establish sharp two-sided heat kernel estimates for <span><math><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>α</mi></mrow><mrow><mi>D</mi></mrow></msubsup><mo>−</mo><mi>κ</mi></mrow></math></span>, with <span><math><mi>κ</mi></math></span> being a non-negative critical potential and <span><math><mi>D</mi></math></span> being a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>β</mi></mrow></msup></math></span> open set, <span><math><mrow><mi>β</mi><mo>∈</mo><mrow><mo>(</mo><msub><mrow><mrow><mo>(</mo><mi>α</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mo>+</mo></mrow></msub><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>. The potential <span><math><mi>κ</mi></math></span> can exhibit multi-singularities and our regularity assumption on <span><math><mi>D</mi></math></span> is weaker than the regularity assumed in earlier literature on heat kernel estimates of fractional Laplacians.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"189 ","pages":"Article 104727"},"PeriodicalIF":1.1000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat kernel estimates for regional fractional Laplacians with multi-singular critical potentials in C1,β open sets\",\"authors\":\"Renming Song , Peixue Wu , Shukun Wu\",\"doi\":\"10.1016/j.spa.2025.104727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>D</mi></math></span> be an open set of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> and let <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>α</mi></mrow><mrow><mi>D</mi></mrow></msubsup></math></span> be the generator of the censored <span><math><mi>α</mi></math></span>-stable process in <span><math><mi>D</mi></math></span>. In this paper, we establish sharp two-sided heat kernel estimates for <span><math><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>α</mi></mrow><mrow><mi>D</mi></mrow></msubsup><mo>−</mo><mi>κ</mi></mrow></math></span>, with <span><math><mi>κ</mi></math></span> being a non-negative critical potential and <span><math><mi>D</mi></math></span> being a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>β</mi></mrow></msup></math></span> open set, <span><math><mrow><mi>β</mi><mo>∈</mo><mrow><mo>(</mo><msub><mrow><mrow><mo>(</mo><mi>α</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mo>+</mo></mrow></msub><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>. The potential <span><math><mi>κ</mi></math></span> can exhibit multi-singularities and our regularity assumption on <span><math><mi>D</mi></math></span> is weaker than the regularity assumed in earlier literature on heat kernel estimates of fractional Laplacians.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"189 \",\"pages\":\"Article 104727\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414925001681\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925001681","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Heat kernel estimates for regional fractional Laplacians with multi-singular critical potentials in C1,β open sets
Let be an open set of , and let be the generator of the censored -stable process in . In this paper, we establish sharp two-sided heat kernel estimates for , with being a non-negative critical potential and being a open set, . The potential can exhibit multi-singularities and our regularity assumption on is weaker than the regularity assumed in earlier literature on heat kernel estimates of fractional Laplacians.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.