C1,β开集中具有多重奇异临界势的区域分数阶拉普拉斯算子的热核估计

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Renming Song , Peixue Wu , Shukun Wu
{"title":"C1,β开集中具有多重奇异临界势的区域分数阶拉普拉斯算子的热核估计","authors":"Renming Song ,&nbsp;Peixue Wu ,&nbsp;Shukun Wu","doi":"10.1016/j.spa.2025.104727","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>D</mi></math></span> be an open set of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> and let <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>α</mi></mrow><mrow><mi>D</mi></mrow></msubsup></math></span> be the generator of the censored <span><math><mi>α</mi></math></span>-stable process in <span><math><mi>D</mi></math></span>. In this paper, we establish sharp two-sided heat kernel estimates for <span><math><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>α</mi></mrow><mrow><mi>D</mi></mrow></msubsup><mo>−</mo><mi>κ</mi></mrow></math></span>, with <span><math><mi>κ</mi></math></span> being a non-negative critical potential and <span><math><mi>D</mi></math></span> being a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>β</mi></mrow></msup></math></span> open set, <span><math><mrow><mi>β</mi><mo>∈</mo><mrow><mo>(</mo><msub><mrow><mrow><mo>(</mo><mi>α</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mo>+</mo></mrow></msub><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>. The potential <span><math><mi>κ</mi></math></span> can exhibit multi-singularities and our regularity assumption on <span><math><mi>D</mi></math></span> is weaker than the regularity assumed in earlier literature on heat kernel estimates of fractional Laplacians.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"189 ","pages":"Article 104727"},"PeriodicalIF":1.1000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat kernel estimates for regional fractional Laplacians with multi-singular critical potentials in C1,β open sets\",\"authors\":\"Renming Song ,&nbsp;Peixue Wu ,&nbsp;Shukun Wu\",\"doi\":\"10.1016/j.spa.2025.104727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>D</mi></math></span> be an open set of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> and let <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>α</mi></mrow><mrow><mi>D</mi></mrow></msubsup></math></span> be the generator of the censored <span><math><mi>α</mi></math></span>-stable process in <span><math><mi>D</mi></math></span>. In this paper, we establish sharp two-sided heat kernel estimates for <span><math><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>α</mi></mrow><mrow><mi>D</mi></mrow></msubsup><mo>−</mo><mi>κ</mi></mrow></math></span>, with <span><math><mi>κ</mi></math></span> being a non-negative critical potential and <span><math><mi>D</mi></math></span> being a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>β</mi></mrow></msup></math></span> open set, <span><math><mrow><mi>β</mi><mo>∈</mo><mrow><mo>(</mo><msub><mrow><mrow><mo>(</mo><mi>α</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mo>+</mo></mrow></msub><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>. The potential <span><math><mi>κ</mi></math></span> can exhibit multi-singularities and our regularity assumption on <span><math><mi>D</mi></math></span> is weaker than the regularity assumed in earlier literature on heat kernel estimates of fractional Laplacians.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"189 \",\"pages\":\"Article 104727\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414925001681\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925001681","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

设D是Rd, α∈(0,2)的一个开集,设LαD是D中删节α-稳定过程的产生器。本文建立了LαD - κ的尖锐双面热核估计,其中κ为非负临界势,D为C1,β开集,β∈((α - 1)+,1)。潜在的κ可以表现出多重奇异性,并且我们对D的正则性假设弱于先前关于分数阶拉普拉斯算子热核估计的文献中假设的正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heat kernel estimates for regional fractional Laplacians with multi-singular critical potentials in C1,β open sets
Let D be an open set of Rd, α(0,2) and let LαD be the generator of the censored α-stable process in D. In this paper, we establish sharp two-sided heat kernel estimates for LαDκ, with κ being a non-negative critical potential and D being a C1,β open set, β((α1)+,1]. The potential κ can exhibit multi-singularities and our regularity assumption on D is weaker than the regularity assumed in earlier literature on heat kernel estimates of fractional Laplacians.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信