二维临界FK-Ising模型中连接概率的保形协方差

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Federico Camia , Yu Feng
{"title":"二维临界FK-Ising模型中连接概率的保形协方差","authors":"Federico Camia ,&nbsp;Yu Feng","doi":"10.1016/j.spa.2025.104734","DOIUrl":null,"url":null,"abstract":"<div><div>We study connection probabilities between vertices of the square lattice for the critical random-cluster (FK) model with cluster weight 2, which is related to the critical Ising model. We consider the model on the plane and on domains conformally equivalent to the upper half-plane. We prove that, when appropriately rescaled, the connection probabilities between vertices in the domain or on the boundary have nontrivial limits, as the mesh size of the square lattice is sent to zero, and that those limits are conformally covariant. This provides an important step in the proof of the Delfino-Viti conjecture for FK-Ising percolation as well as an alternative proof of the conformal covariance of the Ising spin correlation functions. In an appendix, we also derive new exact formulas for some Ising boundary spin correlation functions.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"189 ","pages":"Article 104734"},"PeriodicalIF":1.1000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conformal covariance of connection probabilities in the 2D critical FK-Ising model\",\"authors\":\"Federico Camia ,&nbsp;Yu Feng\",\"doi\":\"10.1016/j.spa.2025.104734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study connection probabilities between vertices of the square lattice for the critical random-cluster (FK) model with cluster weight 2, which is related to the critical Ising model. We consider the model on the plane and on domains conformally equivalent to the upper half-plane. We prove that, when appropriately rescaled, the connection probabilities between vertices in the domain or on the boundary have nontrivial limits, as the mesh size of the square lattice is sent to zero, and that those limits are conformally covariant. This provides an important step in the proof of the Delfino-Viti conjecture for FK-Ising percolation as well as an alternative proof of the conformal covariance of the Ising spin correlation functions. In an appendix, we also derive new exact formulas for some Ising boundary spin correlation functions.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"189 \",\"pages\":\"Article 104734\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414925001772\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925001772","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了与临界Ising模型相关的聚类权值为2的临界随机聚类(FK)模型的方格顶点之间的连接概率。我们认为平面上和区域上的模型与上半平面共形等效。我们证明,当适当地重新缩放时,域内或边界上的顶点之间的连接概率具有非平凡的极限,因为正方形晶格的网格尺寸被发送到零,并且这些极限是共形协变的。这为证明FK-Ising渗流的Delfino-Viti猜想以及证明Ising自旋相关函数的共形协方差提供了重要的一步。在附录中,我们还推导了一些伊辛边界自旋相关函数的新的精确公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conformal covariance of connection probabilities in the 2D critical FK-Ising model
We study connection probabilities between vertices of the square lattice for the critical random-cluster (FK) model with cluster weight 2, which is related to the critical Ising model. We consider the model on the plane and on domains conformally equivalent to the upper half-plane. We prove that, when appropriately rescaled, the connection probabilities between vertices in the domain or on the boundary have nontrivial limits, as the mesh size of the square lattice is sent to zero, and that those limits are conformally covariant. This provides an important step in the proof of the Delfino-Viti conjecture for FK-Ising percolation as well as an alternative proof of the conformal covariance of the Ising spin correlation functions. In an appendix, we also derive new exact formulas for some Ising boundary spin correlation functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信