The zero viscosity limit of stochastic Navier–Stokes flows

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Daniel Goodair, Dan Crisan
{"title":"The zero viscosity limit of stochastic Navier–Stokes flows","authors":"Daniel Goodair,&nbsp;Dan Crisan","doi":"10.1016/j.spa.2025.104717","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce an analogue to Kato’s Criterion regarding the inviscid convergence of weak solutions of the stochastic Navier–Stokes equations to the strong solution of the deterministic Euler equation. Our assumptions cover additive, multiplicative and transport type noise models. This is achieved firstly for the typical noise scaling of <span><math><msup><mrow><mi>ν</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span>, before considering a new parameter which approaches zero with viscosity but at a potentially different rate. We determine the implications of this for our criterion and clarify a sense in which the scaling by <span><math><msup><mrow><mi>ν</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span> is optimal. The criterion applies in both two and three dimensions, with some technical simplifications in the 2D case.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"189 ","pages":"Article 104717"},"PeriodicalIF":1.1000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925001589","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce an analogue to Kato’s Criterion regarding the inviscid convergence of weak solutions of the stochastic Navier–Stokes equations to the strong solution of the deterministic Euler equation. Our assumptions cover additive, multiplicative and transport type noise models. This is achieved firstly for the typical noise scaling of ν12, before considering a new parameter which approaches zero with viscosity but at a potentially different rate. We determine the implications of this for our criterion and clarify a sense in which the scaling by ν12 is optimal. The criterion applies in both two and three dimensions, with some technical simplifications in the 2D case.
随机Navier-Stokes流的零粘度极限
我们引入了关于随机Navier-Stokes方程弱解对确定性欧拉方程强解的无粘收敛的一个类似于Kato准则。我们的假设涵盖了加性、乘法和输运型噪声模型。这首先是在典型的噪声标度为ν12的情况下实现的,然后再考虑一个新的参数,该参数随粘度接近于零,但可能以不同的速率。我们确定了这对我们的标准的影响,并澄清了一种意义,在这种意义上,刻度为ν12是最佳的。该准则适用于二维和三维,在二维情况下进行了一些技术简化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信