{"title":"The zero viscosity limit of stochastic Navier–Stokes flows","authors":"Daniel Goodair, Dan Crisan","doi":"10.1016/j.spa.2025.104717","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce an analogue to Kato’s Criterion regarding the inviscid convergence of weak solutions of the stochastic Navier–Stokes equations to the strong solution of the deterministic Euler equation. Our assumptions cover additive, multiplicative and transport type noise models. This is achieved firstly for the typical noise scaling of <span><math><msup><mrow><mi>ν</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span>, before considering a new parameter which approaches zero with viscosity but at a potentially different rate. We determine the implications of this for our criterion and clarify a sense in which the scaling by <span><math><msup><mrow><mi>ν</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span> is optimal. The criterion applies in both two and three dimensions, with some technical simplifications in the 2D case.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"189 ","pages":"Article 104717"},"PeriodicalIF":1.1000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925001589","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce an analogue to Kato’s Criterion regarding the inviscid convergence of weak solutions of the stochastic Navier–Stokes equations to the strong solution of the deterministic Euler equation. Our assumptions cover additive, multiplicative and transport type noise models. This is achieved firstly for the typical noise scaling of , before considering a new parameter which approaches zero with viscosity but at a potentially different rate. We determine the implications of this for our criterion and clarify a sense in which the scaling by is optimal. The criterion applies in both two and three dimensions, with some technical simplifications in the 2D case.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.